
www.manaraa.com

www.manaraa.com

STILL IMAGE COMPRESSION ON
PARALLEL COMPUTER

ARCHITECTURES

www.manaraa.com

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

MULTIMEDIA SYSTEMS AND APPLICATIONS

Consulting Editor

BorkoFurht
Florida Atlantic University

Recently Published Titles:

INTERACTIVE VIDEO-ON-DEMAND SYSTEMS: Resource Management and
Scheduling Strategies, by T. P. Jimmy To and Babak Hamidzadeh

ISBN: 0-7923-8320-6
MULTIMEDIA TECHNOLOGIES AND APPLICATIONS FOR THE 21st
CENTURY: Visions ofWorld Experts, by Borko Furht

ISBN: 0-7923-8074-6
INTELLIGENT IMAGE DATABASES: Towards Advanced Image Retrieval, by

YihongGong
ISBN: 0-7923-8015-0

BUFFERING TECHNIQUES FOR DELIVERY OF COMPRESSED VIDEO IN
VIDEO-ON-DEMAND SYSTEMS, by Wu-chi Feng

ISBN: 0-7923-9998-6
HUMAN FACE RECOGNITION USING THIRD-ORDER SYNTHETIC
NEURAL NETWORKS, by Okechukwu A. Uwechue, and Abhijit S. Pandya

ISBN: 0-7923-9957-9
MULTIMEDIA INFORMATION SYSTEMS, by Marios C. Angelides and
Schahram Dustdar

ISBN: 0-7923-9915-3
MOTION ESTIMATION ALGORITHMS FOR VIDEO COMPRESSION, by
Borko Furht, Joshua Greenberg and Raymond Westwater

ISBN: 0-7923-9793-2
VIDEO DATA COMPRESSION FOR MULTIMEDIA COMPUTING, edited by
Hua Harry Li, Shan Sun, Haluk Derin

ISBN: 0-7923-9790-8
REAL-TIME VIDEO COMPRESSION: Techniques and Algorithms, by Raymond
Westwater and Borko Furht

ISBN: 0-7923-9787-8
MULTIMEDIA DATABASE MANAGEMENT SYSTEMS, by B. Prabhakaran

ISBN: 0-7923-9784-3
MULTIMEDIA TOOLS AND APPLICATIONS, edited by Borko Furht

ISBN: 0-7923-9721-5
MULTIMEDIA SYSTEMS AND TECHNIQUES, edited by Borko Furht

ISBN: 0-7923-9683-9

www.manaraa.com

STILL IMAGE COMPRESSION ON
PARALLELCOMPUTER

ARCIDTECTURES

by

Savitri Bevinakoppa
Royal Melboume Institute of Technology

Melboume, Australia

.....

"
SPRINGER SCIENCE+BUSINESS MEDIA, LLC

www.manaraa.com

ISBN 978-1-4613-7254-7 ISBN 978-1-4615-4967-3 (eBook)
DOI 10.1007/978-1-4615-4967-3

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

Copyright © 1999 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1999
Softcover reprint ofthe hardcover lst edition 1999
AH rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo­
copying, recording, or otherwise, without the prior written permission of the
publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.

www.manaraa.com

M

To

egha
anisha
ayank

www.manaraa.com

List of Figures
List of Tables
List ofNotations
Preface
Acknowledgement

1 INTRODUCTION
1.1 Introduction
1.2 Problem Statement
1.3 Literature Review

1.3.1 Digital Image Compression Techniques
1.3.2 Performance Improvement

1.4 Research Objectives
1.5 Book Outline

CONTENTS

xi
xv
xix
XXlll

xxv

1
2
2
2
4
6
6

2 DIGITAL IMAGE COMPRESSION TECHNIQUES
2.1 Introduction 9
2.2 Digital Image Compression Techniques 10

2.2.1 Wavelet Transform 11
2.2.2 Fractal Image Compression 11
2.2.3 Vector Quantisation 12
2.2.4 Discrete Cosine Transform 12

2.3 JPEG Standard 13
2.3.1 DCT-Based JPEG Algorithm 13
2.3.2 JPEG Hardware 19
2.3.3 DCT-based JPEG Software 21
2.3.4 Compressed JPEG Data Structure 23

2.4 Block Comparator Enhancement to the JPEG Algorithm 26
2.4.1 Comparison of the JPEG Algorithm and Block Comparator

Technique Execution Times 29
2.4.2 Comparison of the Non-Block Comparator Technique and Block

Comparator Technique Image Compression Ratio 45
2.5 Summary 58

vii

www.manaraa.com

viii Contents

3 PARALLEL PROCESSING PLANS FOR DIGITAL IMAGE
COMPRESSION TECHNIQUES

3.1 Introduction 59
3.2 Parallel Computer Architectures 60

3.2.1 Shared Memory Architecture 61
3.2.2 Distributed Memory Architecture 62
3.2.3 Parallel Programming Languages 66

3.3 Parallel Processing Plans for Digital Image Compression Techniques 67
3.3.1 Image Compression Technique (lCT) 67
3.3.2 Block Dependency (BD) 68
3.3.3 Image Partitioning Method (IPM) 68
3.3.4 Memory Architecture (MA) 69
3.3.5 Memory Organisation / Network Topology (NT) 70
3.3.6 Number of processors (NP) 70

3.4 Implementation of Plans on Parallel Computer Architectures 71
3.4.1 Implementation of Digital Image Compression Plans on

Parallel Computers 71
3.4.2 Simulation of Parallel Processing Plans for Image Compression 72

3.5 Performance Measures 76
3.6 Summary 78

4 IMPLEMENTATION OF JPEG ALGORITHM ON PARALLEL
COMPUTERS

4.1 Introduction 79
4.2 Implementation of the JPEG Algorithm on the Mercury System 80

4.2.1 Mercury System Architecture 80
4.2.2 Implementation of the JPEG Algorithm on the Mercury System 84
4.2.3 Experimental Results 86

4.3 Implementation of the JPEG Algorithm on the Shiva System 87
4.3.1 Shiva System Architecture 87
4.3.2 Implementation of the JPEG Algorithm on the Shiva System 92
4.3.3 Experimental Results 95

4.4 Implementation of the JPEG Algorithm on the Param System 97
4.4.1 Param System Architecture 98
4.4.2 Implementation of the JPEG Algorithm on the Param System 103
4.4.3 Experimental Results 105

4.5 Performance Comparison of Parallel Computers 105
4.5.1 Speedup and Efficiency of the JPEG Algorithm on the Mercury

System 105
4.5.2 Speedup and Efficiency of the JPEG Algorithm on the Shiva

System 110
4.5.3 Speedup and Efficiency of the JPEG Algorithm on the Param

System 112
4.5.4 Performance Comparison 114

4.6 Summary 117

www.manaraa.com

Contents IX

5 SIMULATION OF DIGITAL IMAGE COMPRESSION TECHNIQUES
5.1 Introduction 119
5.2 Simulation Procedure 120

5.2.1 Problem Statement 120
5.2.2 Model Building 120
5.2.3 System Simulation 127
5.2.4 System Analysis 128
5.2.5 Validation 129

5.3 Simulation Results of Digital Image Compression Techniques 130
5.3.1 Plans Selected for Simulation 130
5.3.2 Execution Times Obtained 133

5.4 Performance Comparison of Parallel Architectures 140
5.4.1 Comparison of Speedup 140
5.4.2 Comparison of Scaleup 144
5.4.3 Comparison of Efficiency 147

5.5 Summary 149

6 CONCLUSIONS
6.1 Introduction 159
6.2 Block Comparator Technique Enhancement to the JPEG Algorithm 160

6.2.1 Speed of Operation 160
6.2.2 Image Compression Ratio 162

6.3 Implementation of the Digital Image Compression Algorithm 163
6.3.1 Performance Comparison of Digital Image Compression on

Three Parallel Computer Architectures 163
6.4 Simulation of Digital Image Compression 164

6.4.1 Execution Times 164
6.4.2 Performance Comparison 165

6.5 Directions for Future Research 166

REFERENCES 169
APPENDIX A 175
INDEX 199

www.manaraa.com

LIST OF FIGURES

Figure No.

27
27
28
29
33
34
35
36
37
38
44
44
45
52
53
54
55
56
57
61
63
64
65
66
67

Page No.

10
14
15
16
19
19
20
22

Description

Digital image compression techniques
Non-interleaved data ordering
Interleaved image data ordering
Modified JPEG algorithm
Encoding the DC coefficient
Zig-zag encoding order
JPEG compressor chip (CL550)
JPEG software routines
Sequential processing and storage of image blocks in the JPEG
compression standard
Block comparator enhancement to JPEG compression algorithm
Flow chart of Block Comparator Technique
Compressed data file structure in Block Comparator Technique
Additional steps required in the Block Comparator Technique
Flow chart for summation step
Flowchart for block intensity comparison step
Selection Sort example
Divide and Conquer Sort example
Flowchart for Sample-by-Sample Comparison step
SIF Vs NSB for the Selection Sort method
SIF Vs NSB for the Divide and Conquer Sort method
SIF Vs NSB for the Sample-by-Sample Comparison method
ICR Vs quality for NBCT
ICR Vs quality for CIDS-3 (NSB = 10%)
ICR Vs quality for CIDS-3 (NSB = 30%)
ICR Vs quality for CIDS-3 (NSB = 50%)
ICR Vs quality for CIDS-3 (NSB = 75%)
ICRIF Vs quality
Shared Memory Architectures
Tree topologies
Mesh topologies
Pyramid topologies
Cube topology architecture
Classification of Image Compression Technique

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure 2.21
Figure 2.22
Figure 2.23
Figure 2.24
Figure 2.25
Figure 2.26
Figure 2.27
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6

xi

www.manaraa.com

xii List of Figures

Figure 3.7 Classification of Block Dependency 68
Figure 3.8 Classification ofIrnage Partitioning Method 69
Figure 3.9 Classification ofMemory Architecture 69
Figure 3.10 Classification of Memory Organisation / "Network Topology 70
Figure 3.11 Classification of Number of Processors 71
Figure 3.12 Speedup graph 77
Figure 3.13 Speedup graph showing scaleup 78
Figure 4.1 Interconnection topology of the Mercury system 81
Figure 4.2 (T805) Transputer architecture 82
Figure 4.3 Flow diagram of implementation procedure on the Mercury

system 85
Figure 4.4 Path graph for distribution and composition of image parts 86
Figure 4.5 Master and Slave units and data paths 88
Figure 4.6 Shiva system with ParaT or NAB Slave units 89
Figure 4.7 Intel i860 processor architecture 89
Figure 4.8 Shiva system organisation 90
Figure 4.9 Rates of data transfer with respect to message size 91
Figure 4.10 Implementation procedure of the JPEG algorithm on the three

processor Shiva system 94
Figure 4.11 Task graph for three processors 95
Figure 4.12 Gantt chart of JPEG algorithm on a three transputer network 96
Figure 4.13 Param system architecture 100
Figure 4.14 Architecture of a Param 8600 node 102
Figure 4.15 i860 node architecture 102
Figure 4.16 Three nodes connection in Tree topology 103
Figure 4.17 Flow diagram of implementation procedure on the Param system 104
Figure 4.18 Path graph for distribution and composition of image parts 104
Figure 4.19a Graph of speedup on the Mercury system using POSIC

communication routines 107
Figure 4.19b Graph of efficiency on the Mercury system using POSIC

communication routines 107
Figure 4.20a Graph of speedup on the Mercury system using MPP

communication routines 108
Figure 4.20b Graph of efficiency on the Mercury system using MPP

communication routines 108
Figure 4.21a A comparison of speedup obtained on the Mercury system using

the POSIC and the MPP communication routines 110
Figure 4.21b A comparison of efficiency obtained on the Mercury system

using the POSIC and the MPP communication routines 110
Figure 4.22a Graph of speedup on the Shiva System 112
Figure 4.22b Graph ofefficiency on the Shiva System 112
Figure 4.23a Graph of speedup on the Param system 114
Figure 4.23b Graph ofefficiency on the Param system 114
Figure 4.24a Speedup graph for three parallel computers 116
Figure 4.24b Efficiency graph for three parallel computers 116
Figure 5.1 Graphical representation ofPlan PI 121

Figure 5.2 Modules Diagram 127

www.manaraa.com

List of Figures Xlll

Figure 5.3 SIF graph for Plans P2 and P8 136
Figure 5.4 Speedup graph for Plans P6 and Pl1 for different NSB values 144
Figure 5.5a Host processor specification form 150
Figure 5.5b PE-1 specification form 150
Figure 5.6a TD-1 specification form 151
Figure 5.6b TD-2 specification form 151
Figure 5.7 SD-1 specification form 152
Figure 5.8 Module 1: "Processlmg on Host" 152
Figure 5.9 Module 2: "Processlmg on PE" 153
Figure 5.10 Module 3: "Send Complmg to SD" 153
Figure 5.11a Run parameter form 154
Figure 5.11b Utilisation graph of the host processor and the PE-1 at run time 154
Figure 5.12 Animation parameter specification menu 155
Figure 5.13 Plot parameter specification menu 155
Figure 5.14 Time-line status graph 156
Figure 5.15 aUtilisation graph of host processor 156
Figure 5.15 bUtilisation graph ofPE-1 157
Figure 5.15 c Utilisation graph ofPE-2 157
Figure 5.16 Utilisation of TD-1 in Shared Memory Architecture 158
Figure 5.17 Utilisation of transfer devices on Distributed Memory

Architecture with Pyramid Topology 158
Figure A.1 a Speedup graph for Plan P2 182
Figure A.1b Efficiency graph for Plan P2 183
Figure A.2a Speedup graph for Plan P3 184
Figure A.2b Efficiency graph for Plan P3 184
Figure A.3a Speedup graph for Plan P4 185
Figure A.3b Efficiency graph for Plan P4 185
Figure A.4a Speedup graph for Plan P5 186
Figure A.4b Efficiency graph for Plan P5 186
Figure A.5a Speedup Graph for Plan P6 187
Figure A.5b Efficiency Graph for Plan P6 187
Figure A.6a Speedup graph for Plan P7 188
Figure A.6b Efficiency graph for Plan P7 188
Figure A.7a Speedup graph for Plan P8 189
Figure A.7b Efficiency graph for Plan P8 189
Figure A.8a Speedup graph for Plan P9 190
Figure A.8b Efficiency graph for Plan P9 190
Figure A.9a Speedup graph for Plan PI 191
Figure A.9b Efficiency graph for Plan PI 191
Figure A. lOaSpeedup graph for Plan PI0 192
Figure A.lObEfficiency graph for Plan P10 192
Figure A.11a Speedup graph for Plan P11 193
Figure A.11bEfficiency graph for Plan P11 193
Figure A.12a Speedup graph for Plan P12 194
Figure A.12b Efficiency graph for Plan P12 194
Figure A.13a Speedup graph for Plan P13 195
Figure A.13b Efficiency graph for Plan P13 195

www.manaraa.com

xiv

Figure A.14a Speedup graph for Plan Pl4
Figure A.14b Efficiency graph for Plan Pl4
Figure A.15a Speedup graph for Plan P15
Figure A.15b Efficiency graph for Plan P15

List of Figures

196
196
197
197

www.manaraa.com

Table No. Description

LIST OF TABLES

Page No.

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 2.10
Table 2.11
Table 2.12
Table 2.13

Table 2.14

Table 2.15

Table 2.16

Table 2.17

Table 2.18

Table 4.1
Table 4.2
Table 4.3

Table 4.4
Table 4.5

JPEG compressed data file structure.
JPEG compressed data structure for non-interleaved greyscale
Quantisation data segment structure in the JPEG algoritlun:
Huffman data structure
Frame header data structure
Scan header data structure
SIF table for the Selection Sort method
SIF table for the Divide and Conquer Sort method
SIF table for the Sample-by-Sample comparison method
Compressed Image Data Structure-1
Compressed Image Data Structure-2
Compressed Image Data Structure-3
Image Compression Ratio for Non-Block Comparator
Technique
Image Compression Ratio for Block Comparator Technique
using three Compressed Image Data Structures for Number of
Similar Blocks = 10%
Image Compression Ratio for Block Comparator Technique
using three Compressed Image Data Structures for Number of
Similar Blocks = 30%
Image Compression Ratio for Block Comparator Technique
using three Compressed Image Data Structures for Number of
Similar Blocks = 50%

Image Compression Ratio for Block Comparator Technique using
three Compressed Image Data Structures for Number of Similar
Blocks = 75%
ICRIF for the BCT using the Compressed Image Data
Structures-3 for NSB = 75%
Execution times obtained with POSIC communication routines
Execution times obtained with MPP communication routines
Total time (TtotaO and transmission rate (R) on the SBus

interface for various message sizes
Execution times of the JPEG algoritlun on the Shiva system
Execution times of the JPEG algoritlun on the Param system

23
23
24
24
25
25
41
42
43
48
49
50

52

53

54

55

56

57
86
87

91
97
105

xv

www.manaraa.com

xvi List of Tables

Table 4.6a

Table 4.6b

Table 4.7a

Table 4.Th

Table 4.8a

Table 4.8b

Table 4.9a
Table 4.9b
Table 4. lOa
Table 4. lOb
Table 4.11

Table 4.12a
Table 4.12b
Table 5.1

Table 5.2
Table 5.3

Table 5.4
Table 5.5
Table 5.6

Table 5.7

Table 5.8
Table 5.9
Table 5.10
Table 5.11

Table 5.12
Table 5.13

Table 5.14
Table 5.15
Table 5.16
Table 5.17
Table 5.18
Table 5.19
Table A.l
TableA.2

Speedup on the Mercury system using POSIC communication
routines
Efficiency on the Mercury system using POSIC communication
routines
Speedup on the Mercury system using MPP communication
routines
Efficiency on the Mercury system using MPP communication
routines
The speedup comparison between POSIC and MPP
communication routines
Efficiency comparison between POSIC and MPP
communication routines
Speedup of the JPEG algorithm on the Shiva system
Efficiency of the JPEG algorithm on the Shiva system
Speedup of the JPEG algorithm on the Param system
Efficiency of the JPEG algorithm on the Param system
Execution times of the JPEG algorithm on the three parallel
computers
Speedup of the JPEG algorithm on the three parallel computers
Efficiency of the JPEG algorithm on the three parallel computers
Comparison of execution times obtained from simulation and
implementation for Plan PI
Least execution times for the NBCT Plans
Least execution times for selected Plans using the Block
Comparator Technique
SIF values for the NBCT Plan P2 and the BCT Plan P8
SIF values for various Plans
Least execution times for the IPC Plans Plans using the Block
Comparator Technique
Execution times for NBCT Plan P6 and sequential block
comparison with Plan P11
SIF values for Plan P6 and Plan Pll
Maximum speedup comparison for the NBCT Plans
Maximum speedup comparison for the BCT Plans
Maximum speedup comparison for the NBCT and the BCT
Plans
Speedup comparison of two architectures
Speedup for the NBCT Plan P6 and the BCT Plan Pl1 with
different NSB
Scaleup comparison for the NBCT Plans
Scaleup comparison for the BCT Plans
Scaleup comparison for the NBCT and the BCT Plans
Scaleup comparison of two architectures
Efficiency Cutoff Point for the NIPC Plans
Efficiency Cutoff Point for the IPC Plans
Execution times for NIPC Plan P2
Execution times for NIPC Plan P3

106

106

107

108

109

109
111
111
113
113

115
115
116

129
134

135
136
137

138

139
139
141
142

142
143

144
145
146
146
147
148
149
175
175

www.manaraa.com

List of Tables xvii

Table A3
Table A.4
TableA.5
Table A6
Table A.7
Table A.8
TableA.9
Table A.IO
Table All
Table Al2
Table A.13
Table A.14
Table A.15
Table A.16
Table Al7
Table A.18
Table Al9
Table A20
Table A21
Table A22
Table A.23
Table A.24
Table A.25
Table A26
Table A27
Table A28
Table A29
Table A30
Table A31
Table A.32
Table A.33
Table A.34
Table A.35

Execution times for NIPC Plan P4
Execution times for NIPC Plan P5
Execution times for NIPC Plan P6
Execution times for NIPC Plan P7
Execution times for NIPC Plan P8 (NSB = 10%)
Execution times for NIPC Plan P9 (NSB = 10%)
Execution times for NIPC Plan PI (NSB = 10%)
Execution times for NIPC Plan PIO (NSB = 10%)
Execution times for NIPC Plan Pll (NSB = 10%)
Execution times for NIPC Plan P 12 (NSB = 10%)
Execution times for IPC Plan P 13 (NSB = 10%)
Execution times for IPC Plan Pl4 (NSB = 10%)
Execution times for IPC Plan Pl5 (NSB = 10%)
SIF values for NBCT Plan P3 and BCT Plan P9
SIF values for NBCT Plan P4 and BCT Plan PI
SIF values for NBCT Plan P5 and BCT Plan PlO
SIF values for NBCT Plan P6 and BCT Plan P 11
SIF values for NBCT Plan P7 and BCT Plan Pl2

Speedup for NIPC Plan P2
Speedup for NIPC Plan P3
Speedup for NIPC Plan P4
Speedup for NIPC Plan P5
Speedup for NIPC Plan P6
Speedup for NIPC Plan P7
Speedup for NIPC Plan P8 (NSB = 10%)
Speedup for NIPC Plan P9 (NSB = 10%)
Speedup for NIPC Plan PI (NSB = 10%)
Speedup for NIPC Plan PIO (NSB = 10%)
Speedup for NIPC Plan Pll (NSB = 10%)
Speedup for NIPC Plan P12 (NSB = 10%)
Speedup for IPC Plan P 13 (NSB = 10%)
Speedup for IPC Plan P14 (NSB = 10%)
Speedup for IPC Plan P15 (NSB = 10%)

176
176
176
177
177
177
178
178
178
179
179
179
180
180
180
181
181
181
182
183
185
186
187
188
189
190
191
192
193
194
195
196
197

www.manaraa.com

Notations

II
BBIP
BCF
BCT
BD
BIV
BN
BWIP
CDL
cms
DCT
DCuT
DMA
DPyT
DToT
DTrT
ElL
EO!
HMA
IBD
ICR
ICRBCT

ICRIF

ICRNBCT

ICT
IPC
IPM
JPEG
MA
MCU
ML
MO

LIST OF NOTATIONS

Description

Efficiency
Block Based Image Partitioning
Block Compression Factor
Block Comparator Technique
Block Dependency
Block Intensity Value
Block Number
Balanced Workload Image Partitioning
Component Distribution Language
Compressed Image Data Structure
Discrete Cosine Transform
Distributed Memory Architecture with Cube Topology
Distributed Memory Architecture
Distributed Memory Architecture with Pyramid Topology
Distributed Memory Architecture with Torus Topology
Distributed Memory Architecture with Tree Topology
Equal Intensity List
End Of Image Marker
Hybrid Memory Architecture
Inter-Block Dependency
Image Compression Ratio
Image Compression Ratio for Block Comparator
Technique
Image Compression Ratio Improvement Factor
Image Compression Ratio (ICR) for Non-Block Comparator
Technique
Image Compression Technique used for image processing
Inter-Processor Communication
Image Partitioning Method
Joint Photographic Experts Group
Memory Architecture
Minimum Coded Unit
Match List
Memory Organisation

xix

www.manaraa.com

xx

MPEG
MPP
NB
NBCT

NBEIL
NIBD
NIPC
NL
nl
NP
NSB
NT
NUB
Px
PI
P2
P3
P4
P5
P6
P7
P8
P9
PIO
Pll
Pl2
P13
Pl4
Pl5
PE
POSIC
RL
S

SBCT

SBCTl
SBG
SBL

SBlk

SBNF

SCompimg
SD

SEOI
SIF
Snu
SLgM

List ofNotations

Motion Photographic Experts Group
Message Passing Primitives
Number of Blocks
Non-Block Comparator Technique
Number of blocks in Equal Intensity List

Non-Inter-Block Dependency
Non-Inter-Processors Communication
Number of Similar Block Lists in SBG
Number of Block Numbers in each Unique Block list
Number of processors
Number of Similar Blocks
Network Topology
Number of Unique Blocks
Plan-x for implementation
P(BCT, NIPC, BWIP, DMA, DTrT, NP)
P(NBCT, NIPC, BWIP, SMA, SGM, NP)
P(NBCT, NIPC, BWIP, SMA, SLgM, NP)
P(NBCT, NIPC, BWIP, DMA, DTrT, NP)
P(NBCT, NIPC, BWIP, DMA, DToT, NP)
P(NBCT, NIPC, BWIP, DMA, DPyT, NP)
P(NBCT, NIPC, BWIP, DMA' DCuT, NP)
P(BCT, NIPC, BWIP, SMA, SGM, NP)
P(BCT, NIPC, BWIP, SMA, SLgM, NP)
P(BCT, NIPC, BWIP, DMA,DToT, NP)
P(BCT, NIPC, BWIP, DMA' DPyT, NP)
P(BCT, NIPC, BWIP, DMA, DCuT, NP)
P(BCT, IPC, BWIP, SMA, SlgM, NP)
P(BCT, IPC, BWIP, DMA, DToT, NP)
P(BCT, IPC, BWIP, DMA, DPyT, NP)
Processing Element
Portable Operating Set of Instruction Codes
Reference List
Speedup for NP processors
BCT Compressed image size in Bytes

BCT Compressed image size for CIDS-I in Bytes

Similar Block Group
Similar Block Lists
Size of one block in Bytes

Size of the Block Number Field

Compressed image data size in Bytes

Storage Device
Size of End Of Image marker

Speed Improvement Factor
Size of JPEG Header Information in Bytes

Shared Memory Architecture with Local-Plus-Global

www.manaraa.com

List of Notations

SGM

SMA

SNBCT
SOF
SOl
SOS

SSBM

SSrcimg

SUBM

SUBNF

Tl

TBC

TCS

TD

TDCT

TIntcomp

TJPEG

TN

TQuan

Tsampblock

Tsampcomp

Tsampsum

Tsum

UBG
UBIV
UBN
VQ

xxi

Memory organisation
Shared Memory Architecture with Global Memory
organisation
Shared Memory Architecture
NBCT Compressed image size in Bytes

Start Of Frame
Start Of Image marker
Start Of Scan
Size of the Similar Block Marker

Source image data size in Bytes

Size of the Unique Block Marker

Size of the Unique Block Number Field

Time taken by a single processor

Total number of Base Operations required for Block
Comparison
Total number ofBase operations required for subtraction
operation for one 8 x 8 block
Transfer Device
Total number ofBase Operations required for DCT step for
one 8 x 8 block
Total number ofBase operations required for DCT function
for one 8 x 8 block
Total number ofBase Operations required for Huffman
Encoding for one block
Total number ofBase Operations for block intensity value
comparison
Total number ofBase Operations taken by the JPEG
algorithm
Time taken by N processors

Total number of Base Operations required for Quantisation
step for one 8 x 8 block
Total number of Base Operations required for sample-by­
sample comparison ofone block
Total number of Base Operations for comparing samples of
a block with those of existing Unique Blocks
Total number ofBase Operations required for the
summation of sample values in any image block
Total number of Base Operations for summation of samples
in all image blocks
Unique Block Group
Unique Block Intensity Value
Unique Block Number
Vector quantisation

www.manaraa.com

PREFACE

This book explains investigation of the application of parallel processing techniques
to digital image compression. Digital image compression is used to reduce the number
of bits required to store an image in computer memory and/or transmit it over a
communication link. Over the past decade advancements in technology have spawned
many applications of digital imaging, such as photo videotex, desktop publishing,
graphics arts, colour facsimile, newspaper wirephoto transmission, medical imaging.
For many other contemporary applications, such as distributed multimedia systems
rapid transmission of images is necessary. Dollar cost as well as time cost of
transmission and storage tend to be directly proportional to the volume of data.
Therefore, application of digital image compression techniques become necessary to
minimise costs.

A number of digital image compression algorithms have been developed and
standardised. With the success of these algorithms, research effort is now directed
towards improving implementation techniques. Joint Photographic Experts Group
(JPEG) and Motion Photographic Experts Group (MPEG) are international
organisations which have developed digital image compression standards. Hardware
(VLSI chips) which implement the JPEG image compression algorithm are available.
Such hardware is specific to image compression only and can not be used for other
image processing applications. A flexible means of implementing digital image
compression algorithms is still required. An obvious method of processing different
imaging applications on general purpose hardware platforms is to develop software
implementations.

JPEG uses an 8 x 8 block of image samples as the basic element for compression.
These blocks are processed sequentially. There is always a possibility of having
similar blocks in a given image. If similar blocks in an image is located, then repeated
compression of these blocks is not necessary. By locating similar blocks in the image,
speed of compression can be increased and the size of compressed image can be
reduced. Based on this concept an enhancement to the JPEG algorithm is proposed,
called Block Comparator Technique (BCT).

Most of the current implementation of JPEG and MPEG compression methods are
in sequential form. Parallel processors are becoming more affordable and are likely to
be used quite extensively in the near future. Therefore various options for
implementing digital image compression algorithms were investigated on parallel
computer architectures.

XXlll

www.manaraa.com

ACKNOWLEDGMENTS

First and foremost I would like to express my appreciation and my sincere gratitude to
Ass. Prof. Nalin K. Sharda and Dr. Rema Sharda. Their inspiration, enthusiasm and
encouragement have made this book successful.

I wish to thank my husband Gangadhar, my daughters Megha, Manisha and my
son Mayank for their love and support over the years. My special thanks to my father
V. B. Nandi who encouraged me to undertake this research which was both
challenging and rewarding.

I would like to thank the Department of Computer System Engineering, RMIT,
Melbourne for providing the Mercury system, Defence Science and Technology
Organisation (DSTO), Adelaide for their contribution to the Shiva system installed in
the Department of Computer and Mathematical Sciences, Victoria University of
Technology. I would also like to thank Dr. Vijay Bhatkar, Sampath, Suhas and other
staff members at Centre of Development of Advanced Technology (C-DAC), Pune,
India for their support and assistance carrying out the comparitive studies on the
Param supercomputer.

I would like to extend my sincere thanks to Ass. Prof. Peter Cerone and my
collegues, who proof read this manuscript and made useful corrections.

xxv

www.manaraa.com

1 INTRODUCTION

1.1 Introduction

This chapter gives an introduction to the existing digital image compression
techniques, parallel processing techniques, the research problem and investigation
procedures described in this book.

A literature survey was undertaken to study the existing digital image compression
techniques, performance improvement techniques, and parallel processing techniques.
The Joint Photographic Experts Group (JPEG) algorithm was selected for this
research. At present JPEG standard compression process is done block-by-block in a
sequential manner. An enhancement to the current JPEG compression technique is
proposed. The aims of this enhancement are to speedup the operation and reduce the
compressed image size. Implementation of the JPEG algorithm on parallel computers,
to further speedup compression operations, has also been studied.

Digital image compression is used to reduce the number of bits required to store an
image in computer memory and/or transmit it over a communication link [Jain, 89].
Image compression prior to transmission should reduce the amount of information to
be transmitted, thus lowering the bandwidth requirements and cost. The main focus of
this research is to enhance the performance of the current digital image compression
method. Details of the research problem are given in section 1.2.

A literature review of existing digital image compression standards, and techniques
to improve compression parameters such as quality, speedup and compression ratio
are discussed in section 1.3.

Research objectives are explained in section 1.4. Outline of book chapters is given
in section 1.5.

www.manaraa.com

2

1.2 Problem Statement

Introduction

Transmission of image data using simple techniques requires a bit rate that is too large
for many communications links or storage devices. Digitisation may be desirable for
security and/or reliability, but it can cause bandwidth explosion. Hence data
compression is required to use the available bandwidth as effectively as possible.

Over the past decade advancements in technology have spawned many
applications of digital imaging, such as photo videotex, desktop publishing, graphics
arts, colour facsimile, newspaper wirephoto transmission, medical imaging. For many
other contemporary applications, such as distributed multimedia systems rapid
transmission of images is necessary. Images are used in multimedia for browsing,
retrieval, storage and slide show. Research challenge includes developing real-time
compression algorithms and guaranteed Quality of Service in multimedia applications
[Furht, 94] [Furht, 95]. Dollar cost as well as time cost of transmission and storage
tend to be directly proportional to the volume of data. Therefore, application of digital
image compression techniques become necessary to minimise these costs.

A number of digital image compression algorithms have been developed [Aravind,
89] and standardised, such as the JPEG, the MPEG and PX64 standards. Most of the
current implementations of JPEG and MPEG compression methods are in sequential
form. Parallel processors are becoming more affordable and are likely to be used quite
extensively in the near future. Thus techniques for parallel processing of image
compression can deliver substantial dividends. In this book an improvement to the
JPEG algorithm and a study of techniques for parallel implementation of image
compression is presented.

1.3 Literature Review

Literature survey covered similar work reported in journals and conference
proceedings. To provide an overview of previous work and to provide a basic
theoretical understanding of the subject, the papers presented by various authors are
reviewed and quoted in this chapter. The areas covered in the literature survey are:
digital image compression techniques, standards such as JPEG, MPEG, PX64, parallel
implementations, performance analysis issues.

Digital image compression techniques are discussed in section 1.3.1. Image
compression algorithms include optimisation of parameters, such as quality,
complexity, compression ratio and speedup of operation. Techniques employed to
improve these parameters are discussed in section 1.3.2.

1.3.1 Digital Image Compression Techniques

Various digital image compression techniques, hardware, and software are discussed
in this section.

www.manaraa.com

Introduction 3

Borko Furht has presented a classification of digital image compression technique
in [Furht, 92]. Digital image compression techniques can be broadly classified into
still image compression and motion image compression techniques. Still image
compression techniques can be further classified into lossy compression and lossless
compression techniques. Lossless compression techniques are used to recover the
original image representation perfectly, whereas a lossy compression technique is
used to output image similar to the original one. Lossy compression provides higher
compression ratio. Lossless digital image compression techniques can be classified
based on encoding technique such as Huffman coding, Arithmetic decomposition,
Lempel Ziv, and Run length. Lossy compression techniques are classified into
prediction based technique, frequency oriented techniques, importance oriented
techniques, and hybrid techniques [Furht, 95]. Prediction based techniques predict
subsequent values by observing previous values. Frequency oriented technique apply
the Discrete Cosine Transform (DCT). Importance oriented techniques use some
important characteristics of images as the basis for compression. The hybrid
compression techniques, such as JPEG, MPEG and PX64 use several approaches such
as DCT, Vector Quantisation, prediction technique.

Digital image compression techniques can also be classified based on the
algorithms used such as Wavelet transform, Fractal image, Vector Quantisation and
DCT. The Wavelet transform algorithm is based on basis functions [Koornwinder,
93]. Fractal images are based on Iterated Function Systems (IFS) [Barnsley, 93].
Vector Quantisation is based on vector representation of the image and based on code
book design [Cosman, 96] [Gersho, 92]. The JPEG algorithm is based on Differential
Pulse Code Modulation (DPCM) and the DCT [Pennebaker, 93].

Wavelet transform can also be used with the JPEG standard in the video industry
for on-line editing [Cornell, 93]. The VQ method is complicated by the need for code
design. Therefore, coding with Vector Quantisation is slow as compared to coding
with the JPEG algorithm. VQ is more efficient when it is combined with other
techniques. The JPEG standard is widely used for still imaging applications. The
JPEG algorithm is used in the standard developed by the Motion Pictures Expert
Group (MPEG), for compressing moving pictures as well. Therefore, the JPEG
algorithm was chosen for this research purpose.

Aravind has described a number of digital image compression algorithms and
standards, such as the JPEG, the MPEG and PX64 [Aravind, 89]. The JPEG standard
is described in sufficient detail in [Nelson, 92a], [Pennebaker, 93] and [Wallace, 92].
A very succinct description of the various techniques used in the JPEG standard is
given by William Pennebaker in [Pennebaker, 93]. The MPEG standard is described
in [Gall, 91] and [Draft, 90]. The PX64 compression algorithm for video
telecommunications is described in [Liou, 91]. PX64 algorithm consists of DCT­
based intraframe compression, which is similar to JPEG algorithm and predictive
interframe coding based on Differential Pulse Code Modulation (DPCM) and motion
estimation. Therefore all these standards use the DCT-based method of compression
as a basic step.

Two prominent image compression techniques are predictive technique and DCT­
based technique [Pennebaker, 93]. The JPEG was working on still image compression
using both techniques. The predictive technique is a lossless compression technique
while the DCT - based technique is a lossy technique. The DCT-based method of

www.manaraa.com

4 Introduction

compression is widely used, as it is suitable for a large number of applications, and
also, it is expected that Ocr-based technique developed for implementing the JPEG
standard can be applied to compressing motion pictures as well; because the MPEG
standard is also based on the ocr .

Some of the hardware chips for digital image compression in VLSI
implementation are Toshiba's VLSI processor T9506 [Sugai, 87], C-Cube's JPEG
CL550 chipset, SGS-Thomson's STl140 CMOS chip [Leonard, 91]; and Intel's
Digital Video Interactive (DVI) chip [Vaaben, 91] i750 video processor [Hamey, 91].

1.3.2 Performance Improvement

In developing digital coders many parameters need to be considered, such as bit rate,
quality of output image, complexity of the algorithm, compression ratio, quality of
service and speed of operation. Reduced bit rate reduces quality, unless complexity of
the coding technique is increased. Complexity raises cost, and in many coding
techniques it increases the processing delay as well.

The JPEG algorithm compresses the image based upon a user specified quality
factor, where for higher quality of output image lower compression ratio can be
achieved and vice verse. In the JPEG compressed data structure block numbers are
not specified. If any block is lost during transmission then the output image is not the
same as the input image.

Papathanassiadis T. [Papathanassiadis, 92] discussed compressed image data
structure with block numbers. This has the potential of improving the quality of
service. But, by including block numbers the compression ratio gets reduced.

Roberto Rinaldo [Rinaldo, 95] has discussed block matching technique for fractal
image coding technique. The proposed coding scheme consists of predicting blocks in
one subimage from blocks in lower resolution subbands with the same orientation.
This block prediction scheme is simpler than the iterative scheme adopted in standard
fractal block coders and visual quality is better than the other schemes. A drawback of
Rinold's scheme is the larger encoding time required in comparison to the time
required in coding techniques like JPEG.

The OCT-based methods work on each block of image independently, therefore,
the JPEG algorithm can be parallelised by processing each image block on a separate
processor. The JPEG algorithm can thus be implemented on parallel computer
architectures.

Rapid advances in electronics technology throughout the 1980s has allowed more
complex, yet relatively inexpensive computational devices with greatly increased
throughput to be developed. New concurrent (or parallel) techniques using fast
sequential processing devices, and multi-processing devices are now being applied to
digital data compression. Existing parallel implementations of digital image
compression are discussed below.

The Digital Video Interactive (OVI) algorithm was implemented on the MEiKO
and the iPSC/2 parallel architectures [Tinker, 89]. The MEiKO computer is based on
the T414 transputer. It comprises 65 transputers, and the software is written in

www.manaraa.com

Introduction 5

OCCAM and C programming language. The iPSC/2 is a hypercube parallel computer
based on Intel's i80386 microprocessor. The compression algorithm on a 64 node
MEiKO computer took 13.85 sec/frame and on a 64 node iPSC/2 computer it took
9.05 sec/frame. Therefore, on the 64 node MEiKO or the iPSC/2 computers
compression algorithm could not achieve real-time compression. Even if the number
of processors is increased in the iPSC/2 computer, the minimum compression time
that could be obtained is nearly 2 sec/frame [Tinker, 89].

Compact Disc-Interactive (CD-I) full motion video encoding algorithm was
implemented on Parallel Object Oriented Machine (POOMA). This system was
developed at the Philips research laboratories. It is based on the Motorola MC68020
with a loosely coupled MIMD architecture and consists of 100 nodes. Compression
algorithm took less than 2 sec/frame on loo-processor nodes [Sijstermans, 91]. For
the parallel algorithm used, saturation will occur ifmore than 100 processors are used.
Thus, for real-time applications even this system is not quite adequate.

The HDTV Codec is based on a motion-adaptive DCT algorithm. It consists of a
parallel signal processing architecture and LSI gate array [Kinoshita, 92]. This
hardware compresses the motion picture at the bit rate of 130 Mb/s, that is, in real­
time. This hardware is specific to motion image compression.

John Elliott [Elliott, 89] describes simulation of image compression algorithm on a
supercomputer based on the Transputer processor along with the architecture of the
Edinberg Concurrent supercomputer. The parallel algorithm used on this
supercomputer can process 6 - 7 frames/sec by optimising the code. But for real-time
image compression a speed of at least 18 - 20 frames /sec is required.

M. N. Chong [Chong, 90] describes implementation of the adaptive transform
coding technique on a transputer based quadtree architecture. There is a limitation to
the degree of parallelism that can be achieved in this implementation. The results
obtained on the quadtree structure for various sized networks are given in this paper.
The least execution time of 1.538 sec. is obtained on 16 processors. This execution
time is higher than that required for real-time image compression.

R. Aravind [Aravind, 89] explains implementation of the DCT-based JPEG
decompression algorithm on a Digital Signal Processor (DSP)-based system. This
decoder is capable of processing in real-time, at approximately 15 frames/sec with a
frame size of 128 x 96.

Srinath Ramaswamy [Ramaswamy, 93] describes a parallel pipelined DSP-based
architecture for implementing the DCT-based JPEG algorithm with arithmetic coding.
He has given the experimental results of executing the JPEG algorithm on a DSP­
based architecture for a 256 x 256 pixel monochrome still image. The execution time
varies from 0.61 sec. to 0.12 sec as the number of processors is increased from one to
six. For a large image size, image compression can be achieved in close to real-time
by increasing the number of DSP processors in the network.

Placement of blocks of image data on different parallel architectures is one of the
many issues that was explored and investigated further. Papathanassiadis T.
[Papathanassiadis, 92] discussed various image partitioning strategies. There are two
main methods used for image partitioning: with interblock dependency and without
interblock dependency. Chung-Ta King [Chung-Ta King, 91] discussed strategies for
partitioning and processing images with interblock dependency on distributed

www.manaraa.com

6 Introduction

memory multi-computers. Browne [Browne, 89] discussed the various options of
image processing mapping methods onto Transputer networks.

1.4 Research Objectives

JPEG is one of the most widely used image compression standard. This research is
focused on improving the performance of this standard, and its implementation on
parallel architectures. Hardware (VLSI chips) which implement the JPEG image
compression algorithm are available. Such hardware is specific to image compression
only and can not be used for other image processing applications. A flexible means of
implementing digital image compression algorithms is still required. An obvious
method of processing different imaging applications on general purpose hardware
platforms is to develop software implementations.

JPEG uses an 8 x 8 block of image samples as the basic element for compression.
These blocks are processed sequentially. There is always a possibility of having
similar blocks in a given image. If the similar blocks in an image are located, then
repeated compression of these blocks is not necessary. By locating similar blocks in
the image, speed of compression can be increased and the size of compressed image
can be reduced. Based on this concept an enhancement to the JPEG algorithm, called
the Block Comparator Technique (BCT) is proposed. For many applications rapid
transmission of images in real-time and good quality of service is required. Various
options for enhancing the current JPEG standard is investigated, to reduce the
compressed image size and to improve the speed of compression.

One of the primary objectives of this research project was to develop techniques
for exploiting parallel processing systems for real-time image compression and
decompression. It is expected that such parallel processing technique will not only
reduce the execution time, but will also accomplish other significant performance
improvements such as improved quality of compressed image, improved reliability
and availability of the system, and better scalability. Therefore various options are
investigated for implementing digital image compression algorithms on parallel
architectures.

Some of the implementation options were studied by simulating these on computer
models. A simulation package called NETWORK 11.5 was used for building the
computer model and running the required experiments on the same. Simulation results
were used to determine speedup, scaleup and efficiency of the techniques developed.

1.5 Book Outline

This section gives a brief description of each of the following chapters.

Cbapter 2 Digital image compression tecbniques: In this chapter different digital
image compression techniques, and the JPEG image compression standard are
described. Digital image compression techniques are based on algorithms such as
Wavelet transform, Fractal images, Vector Quantisation and Discrete Cosine

www.manaraa.com

Introduction 7

Transfonn. Digital image compression technique developed by the Joint Photographic
Experts Group is based on the Discrete Cosine Transfonn.

The JPEG technique is applicable to a wide variety of applications and is one of
the most widely used technique. Therefore, JPEG technique is chosen as the main
focus for our research. Present JPEG compression process is done block-by-block in a
sequential manner. An enhancement to the current JPEG compression technique is
proposed, to speedup the operation and reduce the compressed image size.

Chapter 3 Parallel processing plans for digital image compression techniques:
This chapter describes methods used for parallel processing of digital image
compression algorithms. Types of parallel computers and parallel processing 'Plans'
for digital image compression are described. Parallel computers are classified based
on memory access technique, network topology and some other issues.

Digital image compression can be perfonned on parallel computers in a variety of
ways. Each uniquely identifiable way of implementation is called a Plan. Each Plan
can be specified as a 6-tuple consisting of image compression technique, block
dependency, image partitioning method, memory architecture, network topology and
the number of processors. Some of these Plans were implemented on available
parallel computers and other Plans were simulated using the Network 11.5 simulation
package.

Model building and simulation involves ten steps, viz. problem fonnulation, model
building, data collection, model translation, model verification, model validation,
experiment planning, experimentation, analysis of results, and documentation. Each of
these steps are described briefly in this chapter.

Chapter 4 Implementation of the JPEG algorithm on parallel computers: This
chapter describes the hardware architecture and methods used for the implementation
of the JPEG algorithm on parallel computer systems such as Mercury, Shiva and
Paramo The Mercury system has a distributed memory architecture. Shiva system has
a shared memory architecture, and the Param system uses hybrid memory
architecture.

JPEG algorithm was implemented on these three parallel computers with different
image sizes and on various sized networks. This chapter describes implementation of
the JPEG algorithm on three parallel computer systems and it gives the experimental
results obtained on the same.

Chapter 5 Simulation of digital image compression techniques: This chapter
describes modelling and simulation methods used for investigating parallel processing
of image compression techniques, using the Network 11.5 simulation package. Image
compression Plans have been modelled for different parallel computer architectures
using the Network 11.5 simulation package. This chapter describes details of the
model building process and the process of running simulation experiments for various
Plans. Simulation results for these Plans are compiled to evaluate the perfonnance of
these Plans.

Speedup, scaleup and efficiency obtained for each Plan is given and the
performance of different Plans are compared.

www.manaraa.com

8 Introduction

Chapter 6 Conclusions and future research: This chapter gives the conclusions and
directions for future research. The Block Comparator Technique as well as parallel
implementation aspects are discussed.

www.manaraa.com

CHAPTER 2 DIGITAL IMAGE
COMPRESSION TECHNIQUES

2.1 Introduction

This chapter describes digital image compression techniques, and the JPEG image
compression standard. Digital image compression techniques are based on algorithms
such as the Wavelet transform, Fractal images, Vector Quantisation and Discrete
Cosine Transform (DCT). The digital image compression technique developed by the
Joint Photographic Experts Group (JPEG) is mainly based on the quantisation of the
DCT.

The JPEG technique is applicable to a wide variety of applications and is one of
the most widely used technique. Therefore, the JPEG technique is chosen as the main
focus for this research. Presently, JPEG compression process is done block by block
in a sequential manner. An enhancement to the current JPEG compression technique
is proposed. The aim of this enhancement is to speedup the operation and reduce the
compressed image size.

The JPEG algorithm can be implemented on parallel computers to further speedup
the compression and decompression operations.

Digital image compression techniques can be broadly classified into still image
compression and motion image compression techniques. Still image compression
techniques can be further classified based on the algorithm used for compressing the
image such as Wavelet transform, Fractal images, Vector Quantisation (VQ) and the
Discrete Cosine Transform (DCT). These digital image compression algorithms are
described in section 2.2.

The JPEG standard is widely used for still imaging applications. The JPEG
algorithm is used in the standard developed by the Motion Pictures Expert Group
(MPEG), for compressing moving pictures as well. Therefore, The JPEG algorithm
was chosen for our research. Section 2.3 describes the JPEG algorithm in detail.

JPEG uses an 8 x 8 block of image samples as the basic element for compression.
These blocks are processed sequentially. There is always a possibility of having
similar blocks in a given image. If similar blocks are located in an image, then
repeated compression of these blocks is not necessary. By locating similar blocks in
an image, speed of compression can be increased and the size of compressed image
can be reduced. The technique used to enhance the JPEG algorithm is called Block

9

www.manaraa.com

10 Digital Image Compression Techniques

Comparator Technique in this book. This Block Comparator Technique (BCT) is
described in section 2.4.

2.2 Digital Image Compression Techniques

By using mathematical methods such as Fourier transform, it is possible to represent a
given image in terms of a few basis functions [Hunt, 93]. Recently, mathematicians,
scientists and engineers have been active in seeking new methods for representing
signals or data in terms of basis functions. Because these functions can be analysed,
understood and characterised in a succinct manner, these methods can be applied to
digital image compression and many other applications.

Based on the mathematical methods used in digital image compression, still image
compression techniques can be classified as lossy compression techniques or lossless
compression techniques. A classification tree for digital image compression
techniques is shown in figure 2.1. Lossy compression techniques can compress the
image down to 50 : 1 ratio, where-as lossless compression techniques can compress
the image only upto a ratio of 3:1. The lossy compression technique can be further
classified based on the algorithm used such as Wavelet transform, Fractal images,
Vector Quantisation and DCT. Lossless compression technique include the Joint Bi­
level Image Experts Group (JBIG) algorithm and the JPEG algorithm [Pennebaker,
93]. Lossy compression techniques are used in applications such as colour facsimile,
newspaper wire-photo transmission, medical imaging, graphics arts, photovideotex,
desktop publishing, and many other still imaging applications.

Digital Image Compression Techniques

Lossless Compression Technique

JPEG JBIG

Lossy Compression Technique

Figure 2.1 Digital image compression techniques

The Wavelet transform algorithm is based on basis functions; these are described
in section 2.2.1. Fractal images are based on Iterated Function Systems (IFS); these
are described in section 2.2.2. Vector Quantisation is based on vector representation
of the image and code book design; this is described in section 2.2.3. The JPEG

www.manaraa.com

Digital Image Compression Techniques 11

algorithm is based on the DCT and Differential Pulse Code Modulation (DPCM). The
DCT-based method is described in section 2.2.4.

2.2.1 Wavelet Transform

There are two types of Wavelet Transforms ie. Continuous Wavelet Transform and
Discrete Wavelet Transform. The Continuous Wavelet Transform was fIrst presented
by Grossmann and Morlet in 1984. Thereafter it was developed by others, including
Holschneider (1988), Ameo'odo et al. (1989), Forge (1992). Daubechies (1986 and
88) was one of the fIrst to work on Discrete Wavelet Transform. Wavelet
transformation has a number of applications in signal processing and data
compression.

Wavelet transform breaks the signal into a number of wave pulses (wavelets) that
can be dilated and translated in two or more dimensions; and if the wavelet is
anisotropic, it can also be rotated. These wave pulses are represented in terms of an
amplitude function and can be analysed using scale and position of a signal [Hunt,
93]. By choosing an appropriate wavelet one can look at the properties of a signal,
such as, amplitude and time scale of the original signal.

Wavelet basis functions are orthonormal. Therefore, these transformations can be
used to remove redundant signals from the original signal, this leads to compression
of the original signal.

In Wavelet compression the original multi-resolution image is decomposed into a
low resolution signal and a difference signal [Nacken, 93] [Koomwinder, 93]. The
low resolution signal is an average of the low frequency signals and is calculated by
applying low pass fIltering, followed by subsampling. The low resolution signal can
be described by a smaller number of samples than the original image. The difference
signal is the difference between the low resolution image and the actual image. The
difference signal can be coded with a smaller number of bits per pixel. Thus the total
number of bits required to encode the image is smaller than the original image.

2.2.2 Fractal Image Compression

Fractal image compression is based on Iterated Function System (IFS) theory and the
Collage theorem. Fractal image compression can be achieved via the IPS compression
algorithm, which is an interactive image modelling method based on the Collage
theorem.

IFS fractals can be obtained through suitable transformation of the image
[Bamsley, 93]. Such fractals can be used as approximates for real world images. Real
world image is one of many basic shapes, such as a leaf or a letter of the alphabet, or a
black and white fern, or a black cat sitting in a fIeld of snow, etc. These fractals have
the property that they are themselves models for real world images, and at the same
time can be defmed by fmite strings of zeros and ones. This makes them suitable for
image compression.

The Collage theorem says that "to fmd an IPS whose attractor is close to looks like
a given set, one must try to fmd a set of transformations, contraction mappings on a

www.manaraa.com

12 Digital Image Compression Techniques

suitable space within which the given set lies, such that the union, or collage, of the
images of the given set under the transformations is close to or looks like the given
set" [Barnsley, 93]. The degree to which two images look alike is measured using the
Hausdorff metric.

2.2.3 Vector Quantisation

In the Vector Quantisation (VQ) technique image signals are represented by vectors
of samples. Vector Quantisation can be viewed as a form of pattern recognition where
an input pattern is approximated by one of a predetermined set of standard patterns.
That is, the input signal is vector quantised in such a way that the input pattern is
matched with one of a stored set of templates or codewords. In this way the
complicated image signal can be replaced by a series of simple table lookups.

The following theorem shows that VQ can at least match the performance of any
arbitrarily given coding system that operates on a vector of signal samples or
parameters. Theorem is as follows. " For any given coding system that maps a signal
vector into one ofN binary words and reconstructs the approximate vector from the
binary word, there exists a vector quantiser with codebook size N that gives exactly
the same performance, ie. for any input vector it produces the same reproduction as
the given coding system" [Gersho, 92].

Pattern matching with set of codebooks is done in several ways, such as nearest
neighbour quantiser and exhaustic search algorithm [Gersho, 92]. In the nearest
neighbour quantiser search algorithm, a vector is represented by the nearest vector
stored in the codebook. An advantage of such an encoder is that the encoding process
does not require any explicit storage of the geometrical description of the cells. In
exhaustic search algorithm, the search is performed sequentially on every code vector
in the codebook, keeping track of the "best so far" and continuing until every code
vector was tested. This method of pattern matching requires more time but the
resulting compression is better than the nearest neighbour quantiser method.

2.2.4 Discrete Cosine Transform

Discrete Cosine Transform is widely used for many digital image compression
techniques. Digital image compression technique developed by the Joint Photographic
Experts Group (JPEG) is based on the DCT and predictive algorithm. The
Consultative Committee for International Telegraph and Telephone (CCITT, now
called International Telephone Union - lTV) and International Standard Organisation
(ISO) formed this committee to develop compression standards for still and motion
pictures [Wallace, 92].

In the JPEG algorithm there are mainly two image compression methods viz.
predictive method which is carried out in the spatial (data) domain, and the transform
method which is performed in the frequency domain [Leger, 91]. The predictive
method is a lossless compression technique while the DCT-based method is a lossy
compression technique. DCT-based method of compression is widely used as it is

www.manaraa.com

Digital Image Compression Techniques 13

easier to implement and is suitable for a large number of applications including
motion picture compression.

JPEG algorithm is applicable to a wide variety of applications. In most of the
applications the JPEG algorithm is used as a library function. For example, NeXTstep
is the standard operating environment on the NeXT computers and designed to
support a wide range of applications. NeXTstep uses Tag Image File Format (TIFF).
The JPEG algorithm is added to support TIFF fIle reading and writing facilities
[Cockroft, 91]. JPEG is also used for Picture Archiving and Communication Systems
(PACS) in medical imaging field [Kajiwara, 92]. A detail description of the JPEG
standard is given in the next section.

2.3 JPEG Standard

There are three international standards available for image compression for different
applications, viz. JPEG, MPEG, and P*64 [Quinnell, 93]. JPEG is intended for
continuous-tone still images, MPEG is intended for video images, and P*64 is for
video telephony. In this section the JPEG standard is described.

The first step in the JPEG algorithm is to locate data redundancy in the image pixel
values. This is done by using the Discrete Cosine Transform, which is similar to the
Fourier Transform but includes only the Cosine part of the function. Wavelet
transforms can also be used with the JPEG standard in the video industry for on-line
editing [Cornell, 93]. The Vector Quantisation (VQ) method is complicated by the
need for code design. Therefore, coding with Vector Quantisation is slow as
compared to coding with the JPEG algorithm. Vector Quantisation is more efficient
when it is combined with other techniques. Therefore, the JPEG algorithm was chosen
for our research purpose. The JPEG algorithm can be implemented in hardware as
well as in software [Baran, 90].

Details of the DCT-based JPEG algorithm are given in section 2.3.1. The available
hardware chips in VLSI implementation include the C-Cube Micro system's CL550
chipset, the SGS-Thomson's STll40 CMOS chip [Leonard, 91], and Intel's Digital
Video Interactive (DVI) chip [Vaaben, 91]. Section 2.3.2 describes the CL550 chip in
brief.

JPEG has developed software implementation that can be used on general purpose
machines and can be modified easily according to the application requirement.
Section 2.3.3 des(iibes the version-4 of modified JPEG software.

JPEG compressed fIle structure is described in section 2.3.4.

2.3.1 OCT-Based JPEG Algorithm

In the JPEG algorithm the source image is structured as follows [Wallace, 92]. A
source image consists of I to 255 image components (depending upon resolution of
the image). These components are sometimes called colours, spectral bands or
channels. A colour image can be represented in many colour systems viz., Red Green
Blue (RGB), YUV (Y for luminance or brightness, U and V for colour difference
signals Y-R and Y-B respectively), Cyan Magenta Yellow and Black (CMYK) [Ang,

www.manaraa.com

14 Digital Image Compression Techniques

91]. Each component consists of a rectangular array of samples. A sample is dermed

to be an unsigned integer with the range [0, 2P -I] or signed integer with the range [­

2P , 2P-l], where p is sample precision in bits. The JPEG standard has dermed the
concept of a "data unit". A data unit is an 8 x 8 block of samples in DCT-based
codecs. Generally, data units of image components are ordered from left-to-right and
top-to-bottom.

Components of an image can be stored in one of two possible formats, namely
interleaved format and non-interleaved format. If an image component is stored in the
non-interleaved format, the data units are ordered in a pure raster scan sequence as
shown in figure 2.2.

Top

Left

Data
Units

Right

Bottom

Figure 2.2 Non-interleaved data ordering

If the image has two or more colour components each one of these may be stored
in an interleaved format. Each component Ci is partitioned into rectangular regions of
Hi x Vi data units, as shown in the generalised example of figure 2.3. Regions within
a component are ordered from left-to-right and top-to-bottom. Within a region also,
data units are ordered from left-to-right and top-to-bottom.

2.3.1.1 nCT-based Compression Steps. Modified JPEG algorithm involves colour
space conversion, Minimum Coded Unit (MCU) extraction, DCT, quantisation and
encoding steps as shown in figure 2.4. Each of these step are described below.

I. Get the source file header information such as image format, image width,
image height. Get the user specified parameters and generate quantisation table
and Huffman encoding tables and initialise the JPEG output file header and
marker.

2. Conversion from input image format to a standard internal format (either
RGB or grayscale). Colour space conversion (eg. RGB to YCbCr). This is a
null step for grayscale images.

www.manaraa.com

Digital Image Compression Techniques

C is Colour component

Cl: Hl=2, Vl=2

15

C2: H2=2, V2=1

o

2

3

o

C3: H3=1, V3=2

2 3 Data unit

Region

C4: H4=1, V4=1

o

2

3

o 1 2 3

I $t:J!j: I

Figure 2.3 Interleaved image data ordering

The following steps (3 to 8) are performed once for each scan of a complete
image, i.e. once if making a non-interleaved file, and more than once for an
interleaved file.
3. Minimum Coded Unit (MCU) extraction, i.e. creation of a single sequence

of 8 x 8 sample blocks.
4. Edge expansion. This step operates independently on each colour

component.
5. DCT transformation of each 8 x 8 block.
6. Quantisation, scaling and zigzag reordering of the elements in each 8 x 8

block.
7. Huffman (or arithmetic) encoding of the transformed block sequence.
8. Output the JPEG file with required headers/markers.

www.manaraa.com

16 Digital Image Compression Techniques

1. Get Source Image Header Information
and user Specified Parameters

Initialise Output File

,----------

2. Colour Space Conversion

3. MCV Extraction

4. Edge Expansion

S.DCT

6. Quantisation

7. Huffman Encoding

Baseline JPEG
algorithm

Figure 2.4 Modified JPEG algorithm

2.3.1.1a Input File and Parameters. The input image file to be compressed by the
JPEG algorithm can be in either of the following formats: PPM (Pulse Pixel Map),
GIF (Graphics Interchange Format), RLE (provided by Utah Raster Toolkit). Details

www.manaraa.com

Digital Image Compression Techniques 17

of these formats differ but the type of information included in each of these is similar.
In general, an input file contains information about the format used, image width,
image height, maximum value of the sample, and the image data.

Parameters such as quality factor, smoothing factor, and sampling ratio are
input by the user. For any unspecified parameters the default value is used by the
software.

Quantisation tables are generated by taking into account the specified quality
factor. AC and DC Huffman tables are also generated as part of the algorithm
execution. Currently, the values generated are fixed by the JPEG standard. Though, it
is possible to vary these tables to get compressed images of different compression
ratios. The output file includes appropriate header along with the quantisation tables
and Huffman tables. The subsequent step, colour space conversion, is explained in the
next section.

2.3.1.1b Colour Space Conversion. The JPEG source image is divided into groups of
rows. The number of rows in each group is equal to the maximum sampling factor.
Each source image group (GrpSrcImg) is subjected to Colour Space Conversion
(ClrSpcCnv) step. This step converts the input colour space of any format to the
YCbCr format. The YCbCr format is dermed by the CCIR 601-1 standard. For
example, if the input image is in the RGB colour format, then the values of the Y, Cb,
and Cr components can be calculated by the following formulae:

Y = 0.299900 * R + 0.58700 * G + 0.11400 *B
Cb = -0.016874 * R - 0.33126 * G + 0.50000 * B + MAXJSAMPLE12
Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + MAXJSAMPLE/2.

Here MAXJSAMPLE is maximum value of sample in a source image. For
example, in an 8-bit image, MAXJSAMPLE is 255.

2.3.1.1c MCU Extraction. Before applying the DCT function the input image is
converted to a standard format and divided into 8 x 8 sample blocks.

The JPEG proposal dermes the term "data unit" as a block of 8 x 8 samples and
MCV to be the smallest group of interleaved data units. MCU extraction is used for
better organisation of data units for interleaved image data. MCV is a group of data
units taken from the same region of all image components.

A maximum of four components can be interleaved. And a maximum of ten data
units are allowed in an MCV. Because of this restriction, not every combination of
four components which can be represented in non-interleaved order within JPEG
compressed image is allowed to be interleaved. The JPEG proposal allows some
components to be interleaved and some to be non-interleaved within the same
compressed image.

In the JPEG algorithm, the blocks of 8 x 8 samples and image components are
processed sequentially; even though it is also possible to process image components
simultaneously. In the non-interleaved format image components are independent of
each other; whereas, in the interleaved format image components are dependent upon
each other. In the interleaved format a maximum of four image components can be
used in a single MCU. Thus, up to four image components can be processed at a time.

www.manaraa.com

18 Digital Image Compression Techniques

2.3.1.1d Edge Expansion. Edge expansion is used to make the number of samples in a
block, a multiple of the MCV dimension. This is done by duplicating the right-most
column and/or bottom-most row of pixels.

2.3.1.1e Discrete Cosine Transform (DCT). The Discrete Cosine Transform (DCT) is
calculated for each block of the MCV. Output of the DCT F(u, v) gives orthogonal
basis signals given by

1 7 7 (2x+1)u7t (2x+1)v7t
F(u, v) = - C(u) C(v) [I I f(x,y) *cos *cos] (2.1)

4 x=Oy=O 16 16

where C(u), C(v)

andF(u,v)

= {= 1/ J2 u, v = 0
= 1 otherwise,

= Discrete cosine transformed signal.

Output of the DCT step for an 8 x 8 block of samples gives 64 coefficients. The
zero frequency coefficient is called the DC coefficient and the remaining 63
coefficients are known as the AC coefficients. The DC coefficient is a measure of the
average value of the 64 image samples.

2. 3.1.1f Quantisation. Quantisation is achieved by dividing each DCT coefficient by
its corresponding quantiser step size and rounding off to the nearest integer value, so
that

Quantised value Q(u,v) = Integer Round (DCT coefficient / Quantiser step size).
(2.2)

Quantiser step size is calculated with respect to the desired quality of the output
image. This step is performed to achieve compression by representing DCT
coefficients with no greater precision than is necessary to achieve a desired image
quality. On performing quantisation, visually insignificant values are discarded.

2.3.J.1g Huffman Encoding. The frrst value to be encoded in a block is the DC
coefficient. This DC coefficient is encoded as the difference between the DC term of
this block and that of the previous block, in the encoding order shown in figure 2.5.

www.manaraa.com

Digital Image Compression Teclmiques 19

block(i-1)

Dcm

block(i)

DIFF =DCm - DC(i-1)

Figure 2.5 Encoding the DC coefficient

Coefficients other than the first one are called AC coefficients. These AC
quantised coefficients are ordered in a "zig-zag" sequence, as shown in figure 2.6.
Huffman encoding is done with a zig-zag ordering of the samples. This helps in
placing the low frequency coefficients before the high frequency coefficients.
Encoding requires one or more sets of Huffman code tables specified by the
application or generated during the process of compression.

___t- ..J----- Sample

Figure 2.6 Zig-zag encoding order

2.3.J.Jh JPEG Compressed File. The compressed image file contains a header,
quantisation table, Huffman tables, and compressed data. The detailed structure of a
compressed image file is described in section 2.3.4.

2.3.2 JPEG Hardware

The JPEG algorithm was implemented in hardware as a single VLSI chip [Ogawa,
92]. In this section the working and limitations of one such hardware implementation
are briefly described.

www.manaraa.com

20 Digital Image Compression Techniques

C-Cube Microsystem has developed the CL550 chip for implementation of the
JPEG algorithm. A block diagram of the CL550 chip is shown in figure 2.7. This chip
consists of input buffer, output buffer, three functional-units and a sequence controller
unit. Functional-unit-l is connected to a colour-space converter (RGB to YUV
converter) and performs the functions of sub-sampling and level shifting. Functional­
unit-2 is connected to the quantisation table unit and performs DCT and quantisation.
Functional-unit-3 is connected to AC and DC Huffman tables, and performs Huffman
encoding and generates output compressed file with header and marker.

The sequence controller unit controls all the functional-units by giving instructions
for execution in accordance with the values set by an intemal register.

Functional-unit Functional-unit Functional-unit

Inp
Subsampler Huffman and Out

ut DCTand
Buf and Level

Quantiser
Marker put

fer Shifter Handler Buff
er

RGBIYU
V

Converte

Figure 2.7 JPEG compressor chip (CL550)

Advantages of hardware implementation:
• Hardware implementation is faster than software based implementation.
• The chip design is tested extensively before fabrication.
• Operates at 30 MHz which is sufficient to compress and decompress real-time

CCIR 601 format video [Ruetz, 93].

Disadvantages of hardware implementation:
• Output quality is limited, as only four tables are used in the chip.
• Huffman encoding tables are fIXed. In software implementation it is possible to

vary these tables to get compressed images ofdifferent compression ratios.
• The range of available subsampling ratios is limited, due to limited real-estate of

the chip.

www.manaraa.com

Digital Image Compression Techniques

• Low flexibility ofcompression vis-a-vis quality and compression ratio.

21

Many of the limitations of hardware implementation can be overcome in software
based implementations. Main advantages of software based implementation are:

• Flexibility, for variation of parameters such as quality of output image.
• User specified quantisation table and sampling ratio etc.
• Can be implemented on general purpose machines.
• Can be implemented on a variety of parallel computer architectures.

2.3.3 DCT-based JPEG Software

JPEG software packages are available from organisations such as C-Cube
Microsysterns and Kodak. JPEG software is available in many versions. The VER-4
of the software was used. The VER-4 software includes routines for down-sampling
in addition to the standard JPEG steps shown in figure 2.8.

Execution of the JPEG compression software is initiated by the user command
"CJPEG". This command is followed by a list of parameters such as quality factor,
sampling factor, smoothing factor, input file name and output file name. The software
generates quantisation table form the user specified quality factor and stores it in a
buffer. This table is used in the quantisation step, and is also stored in the output file.

The JPEG software takes information such as image format, image-width, image­
height and maximum value of the sample from the input file header. Number of data
units and the number of MCUs is calculated from the image-width and image-height.
Then the software reads a group of image rows equal to the maximum horizontal
sampling factor. Each group is subjected to colour space conversion and
downsampling steps. The colour space conversion process depends upon the image
format.

Smoothing operation is performed on the image to clean up a dithered input file.
The smoothing factor (SF) determines the level of smoothing performed. User can
specify the smoothing factor ranging from 1 to 100. Each input pixel P is replaced by
pI a weighted sum of itself and its eight neighbours as given in the following formula,

pI = «Sum of eight neighbouring samples) * SF + P(I-8*SF)) / 9
where SF= Sf / 1024

Sf = User specified Smoothing factor.
In the next step smoothed data units are subjected to down-sampling. Down­

sampling is used to reduce the total number of samples. For example, a 2 x 2 array of
blocks may be reduced to a single block by replacing groups of four samples by their
average value.

Down-sampled data units are subjected to edge expansion. MCUs are extracted
from the edge expanded rows. DCT and quantisation is performed on each data unit of
the MCU. Quantised MCU is then subjected to a Huffman encoding step. The
encoded image data is stored initially in a buffer and then in an output file.

www.manaraa.com

22 Digital Image Compression Techniques

Get Input File Information and User
Specified Parameters

l _

Edge Expansion

MCU Extraction

DCT of one Bloek

Quantise one Bloek

Inerement Bloek Counter

Inerement MCU Counter

Smoothing and Down-sampling

o

, 0
L J----

, 0,

o
;. .J

, -------L ."

o

, 0
~ .J

,
o
o
o

, 0

~------f--- -,
,

,
~-----_ ..

Initialisation and store JPEG header

Figure 2.8 JPEG software routines

www.manaraa.com

Digital Image Compression Techniques

2.3.4 Compressed JPEG Data Structure

23

This section describes the JPEG compressed data file structure. JPEG algorithm
consists of non-interleaved and interleaved data ordering as described in section 2.3.1.
In this section the non-interleaved data ordering is considered for grey scale images.
JPEG compressed data structure for non-interleaved, greyscale image is as follows
[Pennabaker, 93].

Each compressed data file consists of a header, followed by the compressed image
data, and terminated by an End of Image (EO!) marker, as shown in table 2.1.

Table 2.1 JPEG compressed data file structure.

JHI

Compressed Data Blocks

EOI

JPEG Header Information

End Of Image Marker

The JPEG header contains four groups of information: quantisation table, frame
header, Huffman table, and scan header. This JPEG header is followed by blocks of
compressed image data, and EO! as shown in table 2.2.

Table 2.2 JPEG compressed data structure for non-interleaved greyscale

SOl
DQT, length, quantisation table definition(s)
SOFn, length, frame parameters

DHT, length, Huffman table definition
SOS, length, scan parameters

Compressed Blockl data
Compressed Block2 Data
Compressed Block3 Data
Compressed Block4 Data
.....etc.....

Compressed Blockn Data
EOI

SOl-Start OF Image marker
DQT- Digital Quantisation Table
SOF-Start OfFrarne
DHT-Digital Huffman Table
SOS-Start Of Scan

EOI-End OfImage marker

A more detailed description of each component of the compressed file is given in the
following section.

2.3.4.1 Quantisation Table Specification. The quantisation table is included in the
compressed data file. This table determines the quality of the output image and is
determined by the parameters following the DQT marker shown in table 2.3. In this
structure Pq specifies the precision of the quantisation table elements (0 for 8-bit
precision, 1 for 16-bit precision). Tq is the quantisation table identifier and may have
values from 0 to 3. Qk is the quantisation table elements. It may have values from 1
to the maximum value permitted for the specified precision [pennebaker, 93].

www.manaraa.com

24 Digital Image Compression Techniques

Table 2.3 Quantisation data segment structure in the JPEG algorithm:

Parameter

Marker (X'FFOE')
Ouantisation table definition length
For each quantisation table:

Quantisation table element precision
Quantisation table identifier
Quantisation table element (k=O, 1, 2•.....• 63)

Symbol

DOT
Lq

Pq
Tq
Ok

Size
(bits)
16
16

4
4
8 or 16

2.3.4.2 Huffman Table Specification. The DHT marker segment provides a
mechanism for specifying the Huffinan code tables as shown in table 2.4. In this
structure, the table class Tc, is 0 for DC and lossless coding, whereas Tc is 1 for AC
code tables. Th is the code table identifier, it may have values from 0 to 3. The
Huffman table is specified by identifying the number of codes of each length from 1
to 16. Huffman code of each length is specified by Vij.

Table 2.4 Huffman data structure

Parameter
Marker (X'FFC4')
Huffman table defmition length
For each Huffman table:
Table Class
Huffman table identifier
Number of Huffman codes of length i
fori= I, , 16
Value associated with each Huffman code

for i = I, ..., 16;j = I, ... , Li

Symbol Size (bits)
DHT 16
Lh 16

Tc 4
Th 4
Li 8

Vij 8

2.3.4.3 Frame Header. The JPEG algorithm divides the image into a number of
frames and scans. For non-interleaved data ordering, a single frame is used, whereas
in interleaved data ordering, a sequence of frames are used for encoding. The mode of
encoding is represented by frame header structure in compressed data structure as
shown in table 2.5.

The frame header length Lf gives the length in bytes of the frame parameters.
Sample precision P gives the precision of sample in bits. Available values for sample
precision are 8-bit, 12-bit or 16-bit. Number oflines Y represents the number ofraster
lines after the edge expansion step. X specifies the number of samples per raster line
in a frame. Nf specifies the number of components in a single frame; it can range from
1 to 255. Each frame can be specified by its component identifier, horizontal and
vertical sampling factor for MCU extraction, and quantisation table used for encoding
the component.

www.manaraa.com

Digital Image Compression Techniques

Table 2.5 Frame header data structure

Parameter

Marker (X'FFCO-3, 5-7, 9-B, D-F')
Frame header length
Sample precision
Number of lines
Number of samples/line
Number of components in frame
Frame component specification (i=l, ..., Nt)

Component identifier
Horizontal sampling factor
Vertical sampling factor
Quantisation table destination selector

Symbol

SOFn
Lf
P
Y
X
Nf

Ci
Hi
Vi
Tqi

Size
(bits)
16
16
8
16
16
8

8
4
4
8

25

2.3.4.4 Scan Header. Each frame may have a number of scans, and the scan header
information is included in a compressed data structure as shown in table 2.6. The
number of components in a scan depends upon the mode of image scanning (non­
interleaved and interleaved). In non-interleaved mode of scanning a scan has only one
data unit, and in interleaved mode of scanning a scan has more than one data units.

Table 2.6 Scan header data structure

Parameter

Marker (X'FFDA')
Scan header length
Number of components in scan
Scan component specification(k=I,oo.,Ns)

Scan component selector
DC entropy coding table selector
AC entropy coding table selector

Start of spectral selection or predictor selection
End of spectral selection
Successive approximation bit position high
Successive approximation bit position low or point

transform

Symbol

SOS
Ls
Ns

Csk
Tdk
Tak
Ss
Se
Ah
Al

Size
(bits)
16
16
8

8
4
4
8
8
4
4

Ls gives the length of scan header in bytes. Ns specifies the number of components
in a scan, it ranges from I to 4. Each component in a scan is specified by scan
component selector Csk and entropy coding table selectors Tdk and Tak. Scanning
takes each data unit from the band of MCU coefficients in zig-zag order. The start of
scan selection Ss identifies starting index of this band. Se, the end of scan selection
identifies the index of the last coefficient in the spectral band.

www.manaraa.com

26 Digital Image Compression Techniques

2.4 Block Comparator Enhancement to the JPEG Algorithm

In the JPEG algorithm all image blocks are processed individually. These blocks of
compressed image are stored sequentially as shown in figure 2.9.

The JPEG algorithm divides the input image into a number of blocks. These blocks
are arranged in i rows and j columns. These blocks are processed sequentially from
Block-l to Block-n from left to right and top to bottom [Papathanassiadis, 92].
Compressed data blocks are stored sequentially, as shown in the compressed data file
structure of figure 2.9. The compressed image file begins with a header, and an End of
Image (EOI) marker is placed at the end of this file.

In many types of images, there is the possibility of having one or more similar
blocks in the image. Improvement in performance of the compression algorithm can
be achieved by locating similar blocks in the image. The Block Comparator
Technique is proposed to enhance the performance of the JPEG algorithm. An
overview of the Block Comparator Technique is given in this section.

The logic of the Block Comparator Technique is shown in figure 2.10. The input
file is divided into the required number of blocks, and each block is identified by a
block number. Then all blocks are passed through the block comparator.

The block comparator algorithm is shown as a flow chart figure 2.11. Structure of
the compressed data file is shown in figure 2.12. Similar blocks are identified by
maintaining a Match List and a Reference List (figure 2.12). Each unique block is
given a Unique Block Number. This Unique Block Number is stored in the Reference
List along with the (original) Block Number. The Match List matches each non­
Unique Block Number to the Number of the Unique Block that is similar.

In the block comparator step, first block is taken as Unique Block Number 1. Each
block is compared to the existing unique blocks. If there is a match found, the Block
Number is store in the Match List followed by the Unique Block Number. If there is
no match found, that block is identified with a new Unique Block Number and stored
in the Reference List. This process is repeated for all blocks. The Match List matches
each block to similar unique blocks. Reference List is the list of all unique blocks.
Compression is performed only on the unique blocks, and compressed image blocks
are stored in the Compressed Image File after the Reference List as shown in figure
2.12. Image header and EO! marker are placed at the beginning and the end of the file
respectively.

www.manaraa.com

Digital Image Compression Techniques 27

Compressed Image

~ Image header

IPEG Compressor ... Compressed
po

Block-I Data

Compressed
~~ Block-2 Data

, ,, ,,

Compressed
Block-n Data

8 EndOfimage
Marker

2j

n=ij

Input

j =Number of~<:I<:~s,------,

--+
r-=lrlJ;l
~ ... L-J ...~

~ I 2

j+1 j+2

er
s «i-I)j+

n

Data
unit

i
Numb
of Row

JPEG Compressed Data File Structure

Figure 2.9 Sequential processing and storage of image blocks in the JPEG
compression standard

Input

j =Number of Columns Compressed Image

Reference
List

Match List

Compressed
Data

Image header

Similar blocks

Block
Comparator

Unique

2j

n=ij

I 2

,e j+1 j+2

«i-I)j
+\)

-

i=
Numb

of
Rows

EOI

IPEG Compressed
Data

Figure 2.10 Block comparator enhancement to the JPEG compression algorithm

www.manaraa.com

28

No Match Found

Assign a Unique Block
Identifier and store in

Reference List

Digital Image Compression Techniques

Initialisation of Image
Header and Intensity

Summation

Match Found

Store In the Match List

Store Match List and
Reference List in the
Compressed data File

Compress Unique Blocks

Store Compressed Data in
File

Place EOI Marker

Figure 2.11 Flow chart of Block Comparator Technique

www.manaraa.com

Digital Image Compression Techniques 29

Match List Compressed Data File Structure Reference List

Unique Block No. Block No.

Blo Image Header I I
ck No. Unique Block No. ...

2 I
2 4

Match List
3 I

3 5

6 2 ~ 4 8

Reference List 5 II
7 I

, , 0 6 15
0 I 0

Unique Block-I, t>
0 I 0

~
Compressed Data 7 19

Unique Block-2, 8 230 I ,
0 I , Compressed Data
0 I ,

I 00

0 I 0

25 I Unique Block-3, 0 I 0

Compressed Data
k 56

0 ,
0 ,

Unique Block-k,
Compressed Data

EOI

Figure 2.12 Compressed data file structure in Block Comparator Technique

The Block Comparator Technique improves the speed of the compression and
reduces the size of the compressed data file. These two factors are discussed in the
following sections.

2.4.1 Comparison of the JPEG Algorithm and Block Comparator
Technique Execution Times

In this section the execution time of the JPEG algorithm is calculated with and
without the proposed Block Comparator Technique. The computation time is
calculated in terms of number of the arithmetic operations such as additions,
subtractions, multiplications, divisions, and comparisons. Each arithmetic operation is
equated to a number of Base Operations. The number of equivalent Base Operations
for each arithmetic operation can be determined for specific processors. Transputer
IMS T805 processor is chosen for calculating the number of Base Operations. For 64-

www.manaraa.com

30 Digital Image Compression Techniques

bit floating point operation, Transputer IMS T805 processor takes 7 cycles for
addition and subtraction, 20 cycles for multiplication, 32 cycles for division, and 7
cycles for comparison [SGS-Thomson, 91]. Let us assume one Base Operation is
equal to 7 cycles. Therefore, The number of Base Operations required for addition,
subtraction, and comparison is equal to 1, for multiplication it is nearly equal to 3, and
for division it is nearly equal to 5.

Computation time for the JPEG algorithm is given in section 2.4.1.1. Computation
time for the Block Comparator Technique is given in section 2.4.1.2. A comparison of
the computation time for the JPEG and the Block Comparator Technique is given in
section 2.4.1.3.

2.4.1.1 Computation Time for the JPEG Algorithm. In this section the total
number of Base Operations required is calculated for compressing a complete image
using the JPEG algorithm. In this section the DCT, quantisation, and encoding steps
of JPEG algorithm were considered as main steps to calculate the computation time,
as these required higher computation time in compression operation.

Let TJPEG be the total number of Base Operations taken by the JPEG algorithm.

Then TJPEG is the sum of the number of Base Operations required for DCT,

quantisation and encoding and so,

TJPEG = (2.3)

where,
TDCT

NB

Total number of Base Operations required for DCT step for one 8

x 8 block,
Total number of Base Operations required for Quantisation step

for one 8 x 8 block,
Total number of Base Operations required for Huffman Encoding

for one block,
Number of Blocks.

Discrete Cosine Transform step: DCT step consists of two operations. First
operation is subtraction of each sample from half of the maximum sample value. The
second operation is the DCT function itself. Therefore, the total number of Base
Operations required for the DCT step can be calculated as

TDCT = TCS + Tdct (2.4)
where,
TCS Total number of Base Operations required for subtraction

operation for one
8 x 8 block
64 Subtractions
64 Base Operations,
Total number of Base Operations required for DCT function for

one 8 x 8 block.

www.manaraa.com

Digital Image Compression Techniques 31

The Independent JPEG Group (IJG) source code uses 12 multiplications and 32
additions to perform DCT function for a one dimension (I-D) DCT. A 2-D DCT in
IJG software is done by performing 1-D DCT on each row followed by 1-D DCT on
each column. Therefore, we need 16 1-D DCTs to perform 2-D 8 x 8 DCT as given in
equation 2.5,

16 (12 multiplications + 32 additions)

192 multiplications + 512 additions
3 * 192 + 512 Base Operations
1088 Base Operations.

(2.5)

By substituting the value of Tcs and Tdct into equation 2.4 we get the total

number of Base Operations for DCT step as 1152 Base Operations, as

TDCT - 64 + 1088

1152 Base Operations.

(2.6)

Quantisation: Quantisation step involves the division of each sample by its quantiser
step. An 8 x 8 block, quantisation takes 64 division, thus,

TQuan 64 Divisions

64 * 5 Base Operations
320 Base Operations.

(2.7)

Huffman encoding: For the DCT and the quantisation steps the required number of
Base Operations could easily specify. Huffman encoding requires many arithmetic
and logic operations such as multiplication, increments, shift operations, subtractions.
Therefore it is difficult to specify the exact number of arithmetic operations for the
Huffman encoding step. The experimental results showed that the total time required
for Huffman encoding is about 60% of the compression time. The remaining 40% of
the compression time is required for DCT and quantisation. From these experimental
results, the number of Base Operations required are calculated for Huffman encoding
step as,

TDCT+TQuan
TEnco = 60 * (40) (2.8)

= 60* (1l5~~320)

== 2208BaseOperatiom
By combining equations 2.6, 2.7 and 2.8 relating the total number of base

operations for one block, the total number of Base Operations required for the JPEG
algorithm can be calculated as,

TJPEG (2.9)

www.manaraa.com

32 Digital Image Compression Techniques

=NB * [1152 +320+2208]

== NB * [3680] Base Operations.

The JPEG algorithm takes 3680 Base Operations to perfonn compression
operation on one block. The complete image consists of NB number of blocks.
Therefore NB x 3680 Base Operations are required for compressing a complete
image.

2.4.1.2 Computation Time Taken for Block Comparator Algorithm. In this
section the total number of arithmetic operations required are calculated for
compressing a complete image using the Block Comparator Technique. The number
of arithmetic operations required for the Block Comparator algorithm is the sum of
the number of arithmetic operations required for Comparison and the number of
arithmetic operations required for Compression, and so,

where,
TBC

TJPEG

(2.10)

Total number ofBase Operations required for (Block) Comparison,
Total number ofBase Operations required for Compression.

The number of Base Operations required for the Compression step TJPEG can be

calculated from equation 2.3 by replacing the Number of Blocks (NB) by the Number
of Unique Blocks (NUB).

The number of Base Operations required for the Block Comparator step are
calculated in this section. Block Comparison step consists of following three main
steps,
1. Summation ofsample intensity value in each block
2. Block intensity comparison
3. Sample-by-sample comparison ofblocks

The additional steps required in the Block Comparator Technique are shown in
figure 2.13. The number of Base Operations required for Block Comparison, TBC is

given by,

TBC =Tsum + Tintcomp + Tsampcomp (2.11)

where,
TBC Total number of Base Operations for Block

Comparison,

www.manaraa.com

Digital Image Compression Techniques 33

Tsum

Tintcomp

Tsampcomp

Total number of Base Operations for summation of

samples in all image blocks,
Total number of Base Operations for block intensity

value comparison,
Total number of Base Operations for comparing

samples of a block with those of existing Unique
Blocks.

Sample
Intensity

Summation
&

Block Intensity
Comparison &

Sample-by-Sample
Comparison

Figure 2.13 Additional steps required in the Block Comparator Technique

Sample intensity summation: Algorithm for summation of samples is shown in the
flow chart of figure 2.14. In the summation step, the first block is called Block-I.
Sample values of this block are summed sample-by-sample, and the summation result
is stored in a Block Intensity List (BIL) as the Block Intensity Value-I (BIV-I). This
process continues for all blocks. Block Intensity List consists of Block Intensity
Values for all blocks.

The total number of arithmetic operations required for summation process, Tsum

is given by,

Tsurn =NB *Tsarnpsum

= NB*64add

= NB * 64 Base Operations

(2.12)

where,

Tsampsum Total number of Base Operations required for the summation

of sample values in any image block.

www.manaraa.com

34 Digital Image Compression Techniques

Get a New Block

Add Sample

No

Place in
Block-Intensity-List

Go To Block
Intensity

Comparison Step

No

Figure 2.14 Flow chart for summation step

Block intensity comparison: In the Block Intensity Comparison step each Block
Intensity Value (BIV) is taken from the Block Intensity List. This BIV is compared to
each of the existing Unique Block Intensity Value (UBIV). If the BIV is equal to any
of the UBIVs, then this BIV is stored in an Equal Intensity List (ElL). If this BIV is
not equal to any of the UBIVs for the unique blocks stored in the Reference List then
this block number is stored in the Reference List and the BIV is stored in the UBIV
List. The Flowchart for Block Intensity Comparison is shown in figure 2.15.

www.manaraa.com

Digital Image Compression Techniques

Get a New Block From
~-.....,

Block Intensity List

Compare Block Intensity
Value with Unique Block

Intensity Value

No
Is Equal

35

Yes

Place in Reference
List

Place in Equal
Intensity List

Is Last
Block

No

Yes

Go To
Sample-by-Sample

Comparison Step

Figure 2.15 Flowchart for block intensity comparison step

Block comparison can be done either on a list of sorted values or on a list of
unsorted values. The sorted list is used for comparison because it helps in grouping
equal intensity values. There are many sorting techniques. The Selection Sort and the
Divide and Conquer sort methods were chosen in this chapter [Kruse, 94]. These two
sort methods are explained in the following sections.

www.manaraa.com

36 Digital Image Compression Techniques

Selection Sort: This method is illustrated in figure 2.16, which shows steps needed to
sort a list of five BIYs.

Unsorted List Sorted List

75

54

128

62

12

12

54

62

75

128

Figure 2.16 Selection Sort example

First stage is to [rod the largest number in the list, i.e. 128. Exchange this number
with the number stored in the last position. Repeat this process on the shorter list
obtained by omitting the last entry. The sorted list is obtained as shown in the last list.

For worst case the number of comparisons required for a Selection Sort is given
by [Kruse, 94],

Tintcomp

where,
NB

NB· (NB-l) / 2 Comparisons, (2.13)

NB • (NB-l) / 2 Base Operations,

Number of Blocks in an image.

Divide and Conquer Sort method: This method is illustrated in figure 2.17, which
shows steps needed to sort a list of five BIYs.

The step of sort is to chop the list into two sublists of sizes as nearly equal as
possible. Here the number of elements are five. So chop the list into two sublists
consists of three elements in sublist-l and two elements in a sublist-2 as shown in
figure 2.18.

Again divide first sublist-l into two sublists one of75 and 54, other sublist of 128.
Then sort the sublists:

54, 75
128
12,62

Then merge the sorted sublists. First merge the sublist-l and sublist-2 and sort it.

54, 75, 128 ---------> 54, 75, 128
Merge this list with sublist-3.
54, 75, 128 and 12, 68 ------------> 12, 54, 68, 75, 128

www.manaraa.com

Digital Image Compression Techniques 37

Sorted

Sublist

54 54

75 75

Sublist 128

Unsorted

75

54

128

62

12

Unsorted

Sub1ist Sublist

75 BE54
54

128 Sublist

Sublist ~
62 Sublist

12 BE12

Sublist

[iD
~

12

62

Sorted

12

54

62

75

128

Figure 2.17 Divide and Conquer Sort example

The worst case number of comparisons required for Divide and Conquer sort
method is given by [Kruse, 94],

Tintcomp

where,
NB

NB 19 NB Comparisons

NB 19 NB Base Operations,

Number of Blocks in an image.

(2.14)

(2.15)

Number of blocks in Equal Intensity List (EQL),

Total number of Base Operations required for sample-by­

sample comparison of one block,
64 comparisons (Maximum),
64 Base Operations (Maximum).

where,

NBEIL

Tsampblock =

Sample-by-Sample comparison: Algorithm for sample-by-sample comparison of
two blocks is shown in the flow chart of figure 2.18. A Block is picked from the
Equal Intensity List (ElL) and compared with the Unique Block sample-by-sample.
The two blocks are said to 'match' if and only if all samples in one block have exactly
the same values as the corresponding samples in the other block. If the block being
compared matches with any of the unique blocks identified, it is placed in the Match
List, else it is entered in the Reference List. This process continues for all the blocks.

For some type of images closely matching blocks may be acceptable. But, in the
current investigation it is not looked into this possibility.

The total number of arithmetic operations required for the sample comparison
step is given by,

Tsampcomp = N BElL * (Tsampblock)

www.manaraa.com

38 Digital Image Compression Techniques

Get a New Block From EIland
an corresponding Unique Block

from the UBL

Compare the Sample Values
for Corresponding Samples .. ---.
in the New Block and the

Unique Block

No

Place New Block in the
Reference List

Place New Block in
the Match List

End

No

Figure 2.18 Flowchart for Sample-by-Sample Comparison step

Total number of base operations for the Block Comparator Technique:

By substituting equation 2.11 in equation 2.10, we get

T C = T + T. + TB T sum mtcomp sampcomp + TJPEG (2.16)

By substituting the equation (2.12), (2.13) and (2.15) in equation (2.16), we get the
equation (2.17) for TBCT, using Selection Sort method,

www.manaraa.com

Digital Image Compression Techniques 39

T
BCT

= NB * 64 +(NB*(NB-l)) / 2 + NBEIL * 64 + NUB * 3680

(2.17)

By substituting the equation (2.12), (2.14) and (2.15) in equation (2.16), we get the
equation (2.18) for TBCT using Divide and Conquer sort method.

T
BCT

= NB * 64 + (NB *IgNB) + NBEIL * 64 + NUB * 3680

(2.18)

2.4.1.3 Comparison of Computation Time for the Non-Block Comparator
Technique and the Block Comparator Technique. The JPEG algorithm is called as
Non-Block Comparator Technique (NBCT) in this book. The Block Comparator
Technique (BCT) using Selection Sort method for intensity comparison is called as
Selection Sort method and BCT using Divide and Conquer Sort method is called as
Divide and Conquer Sort method in this section.

The speed improvement obtained by the Block Comparator Technique over the
Non-Block Comparator Technique can be represented by a factor called the Speed
Improvement Factor (SIP). SIF is defmed as the ratio of total number of Base
Operations required for the Non-Block Comparator Technique (NBCT) to the total
number of Base Operations required for the Block Comparator Technique (BCT), as
given by

T
SIP = NBCT

TBCT .
(2.19)

Values of SIF using the Selection Sort method are given in table 2.7. For the
Divide and Conquer Sort method SIF values are given in table 2.8. SIP values
obtained by using the direct Sample-by-Sample comparison method are given in table
2.9. In each of these tables the SIF values are calculated for three image sizes, viz. NB
= 256, 4266, and 15594. For each image size SIF values are calculated for Number of
Similar Blocks (NSB) in the image equal to 0%, 10%, 30%, 50%, 75%, 85%, 90%,
95% and 100%. Graph of SIF versus NSB using the Selection Sort method, is shown
in figure 2.19. The graph for the Divide and Conquer Sort method is shown in figure
2.20, and graph for the block comparison using direct Sample-by-Sample Comparison
method is shown in figure 2.21.

Conclusions are derived by comparing SIF values obtained for the three different
methods, and also by comparing SIP values for each method individually. These
conclusions are given in the following sections.

Common conclusions for all methods: The Speed Improvement Factor (SIF) is less
than one for a zero number of similar blocks irrespective of the method used and the
image size. This result is expected, as there is no speed improvement when there are
no similar blocks; because there is additional computation time required for the block

www.manaraa.com

40 Digital Image Compression Techniques

comparison step. Therefore, the Block Comparator Technique will add unwanted
computational overhead if there are no similar blocks in an image.

SIF values for all image sizes increase monotonically with increase in the value of
NSB. For most of the methods studied SIF is greater than one for NSB >= 10%. This
indicates that the Block Comparator Technique delivers dividends even for a small
number of similar blocks. The maximum SIF was obtained for 100%, that indicates
image is a blank paper.

Conclusion for the BCT using the Selection Sort method: SIF values for NB = 256
is greater than one for NSB in the range of 10% to 100%. Whereas, for NB = 4266
SIF is less than one even upto 50% similar blocks. On the other hand for NB = 15594
SIF is less than one for all values of NSB. This indicates that there is no benefit in
using the Block Comparator Technique in conjuction with the Selection Sort method
for large images. Selection Sort method is suitable only for small image size.

Conclusion for the BCT using the Divide and Conquer Sort method: SIF is
greater than one for NSB >= 10% and increases monotonically. SIF is almost equal
for all image sizes for the same values of NSB. Therefore, the Divide and Conquer
method is suitable for all image sizes.

Conclusion for the BCT using the direct Sample-by-Sample Comparison
method: The SIF values for all image sizes and values ofNSB are almost equal to the
SIF values for the Divide and Conquer method, except for NSB=IOO. For NSB=100,
SIF is greater for the Sample-by-Sample comparison method than that for the Divide
and Conquer Sort method.

Divide and Conquer Sort versus Sample-by-Sample Comparison: Block
comparison using Divide and Conquer Sort method is used to sort the image blocks
according to the intensities of these blocks. This helps to group blocks with equal
intensities. Equal intensity blocks can then be distributed on a parallel computer so as
to balance the work load on all processors. This increases the improvement in the
speedup of parallel processing. This aspect of work load balancing is discussed in
more detail in chapter 3.

The Block Comparison Technique using Sample-by-Sample comparison method
cannot be used for grouping of blocks with equal intensity values. Therefore, we can
say that the Block Comparator Technique using Divide and Conquer method is more
suitable for parallel processing.

www.manaraa.com

Digital Image Compression Techniques

Table 2.7 SIF table for the Selection Sort method

41

Num %of Num Total number of Number of Speed
berof Number of berof Base Operations for Base Operations Improvemen

Blocks in Similar Blocks in Non-Block for Block t Factor
an image Blocks Match Comparator Comparator (SIF)

(NB) (NSB) List Technique Technique
(TNBCT) (TBCT)

256 0 0 942080 991104 0.951
10% 26 942080 897088 1.050
30% 77 942080 712672 1.322
50% 128 942080 528256 1.783
75% 192 942080 296832 3.174
85% 218 942080 202816 4.645

90% 230 942080 159424 5.909

95% 244 942080 108800 8.659

100% 256 942080 69088 13.636
4266 0 0 15698880 25069149 0.626

10% 427 15698880 23525117 0.667
30% 1280 15698880 20440669 0.768
50% 2133 15698880 17356221 0.905
75% 3200 15698880 13497949 1.163
85% 3626 15698880 11957533 1.313
90% 3839 15698880 11187325 1.403
95% 4053 15698880 10413501 1.508
100% 4266 15698880 9646973 1.627

15594 0 0 57385920 1.8E+08 0.319
10% 1560 57385920 1.74E+08 0.329
30% 4679 57385920 1.63E+08 0.352
50% 7797 57385920 1.52E+08 0.378
75% 11696 57385920 1.38E+08 0.417
85% 13255 57385920 1.32E+08 0.435
90% 14034 57385920 1.29E+08 0.444
95% 14815 57385920 1.26E+08 0.454
100% 15594 57385920 1.24E+08 0.464

www.manaraa.com

42 Digital Image Compression Techniques

Table 2.8 SIF table for the Divide and Conquer Sort method

Numbe % of Number Total number Number 0 Speed
r of Blocks Number of~f Blocks ill ~f Base Operations!Base Operations)mprovement
'n all Similar lMatch List ~or Non-Block or Bloc~)factor (SIF)
'mage(NB Blocks ~omparator Comparator

(NSB) [Technique Technique
(TNBCT) TBCT)

256 0 0 942080 960512 0.981

10% 26 942080 866496 1.087

30% 77 942080 682080 1.381

50% 128 942080 497664 1.893

75% 192 942080 266240 3.538

85% 218 942080 172224 5.470

90% 230 942080 128832 7.312

95% 244 942080 78208 12.046

100% 256 942080 38496 24.472

4266 0 0 15698880 16023346 0.980
10% 427 15698880 14479311 1.084

30% 1280 15698880 11394863 1.378
50% 2133 15698880 8310415 1.889
75% 3200 15698880 4452143 3.526
85% 3626 15698880 2894416 5.424
90% 3839 15698880 2124208 7.390
95% 4053 15698880 1350384 11.625
100% 4266 15698880 601170 26.114

15594 0 0 57385920 58601129 0.979
10% 1560 57385920 52960180 1.084
30% 4679 57385920 41681876 1.377
50% 7797 57385920 30407188 1.887
75% 11696 57385920 16308404 3.519

85% 13255 57385920 10578608 5.425
90% 14034 57385920 7761744 7.393

95% 14815 57385920 4937648 11.622
100% 15594 57385920 2216905 25.886

www.manaraa.com

Digital Image Compression Techniques 43

hodbl fi h Sib SblTa e 2.9 SIF ta e or t e ample-)y- ample companson met
% of NumbE Total number Number of BasE Speed

lNumber Number of r of Block~of Base OperationsiOperations for mprovem
~f Blocks Similar Blocks ·n Matcb f"or Non-BlockIBi0ck Comparator fOnt Factor
lin an (NSB) iList Comparator ~echnique(TBCT) SIF)
·mage Technique
KNB) (TNBCT)

256 0 0 942080 958464 0.983

10% 26 942080 862784 1.092
30% 77 942080 675104 1.395

50% 128 942080 487424 1.933

75% 192 942080 251904 3.740

85% 218 942080 156224 6.030

90% 230 942080 112064 8.407

95% 244 942080 60544 15.560

100% 256 942080 20064 46.954

4266 0 0 15698880 15971904 0.983

10% 427 15698880 14400544 1.090

30% 1280 15698880 11261504 1.394

50% 2133 15698880 8122464 1.933

75% 3200 15698880 4195904 3.741

85% 3626 15698880 2628224 5.973

90% 3839 15698880 1844384 8.512
95% 4053 15698880 1056864 14.854
100% 4266 15698880 276704 56.735

15594 0 0 57385920 5.84E+07 0.983
10% 1560 57385920 5.26E+07 1.090
30% 4679 57385920 4.12E+07 1.394
50% 7797 57385920 2.97E+07 1.933

75% 11696 57385920 1.53E+07 3.740

85% 13255 57385920 9605536 5.974

90% 14034 57385920 6738816 8.516

95% 14815 57385920 3864736 14.849

100% 15594 57385920 1.00E+06 57.289

www.manaraa.com

44 Digital Image Compression Techniques

3010
50

% of SB
75 100

NB=15594

Figure 2.19 SIF Vs NSB for the Selection Sort method

30
tl

25Cl.l

~ ~ 20>CI)e I

150.. ...

.§ ~ 10-0 «l
Cl.l ~

5Cl.l
0..

CI)
0

0
30

75 100

Figure 2.20 SIF Vs NSB for the Divide and Conquer Sort method

www.manaraa.com

Digital Image Compression Techniques 45

NB=15594

NB=4266

10075
% of

60

50

40

30

20
10

o~o~;-==::=~~~~

Figure 2.21 SIF Vs NSB for the Sample-by-Sample Comparison method

2.4.2 Comparison of the Non-Block Comparator Technique and
Block Comparator Technique Image Compression Ratio

In this section the Image Compression Ratio obtained for the Digital Image
Compression Techniques are calculated with and without the proposed Block
Comparator Technique. Image Compression Ratio (ICR) is defmed as the ratio of
original image data size to the compressed image data size as given by,

Ss .
ICR = rcung

SCompimg

where,
ICR

SSrcimg

SCompimg

(2.20)

Image Compression Ratio,
Source image data size in Bytes,

Compressed image data size in Bytes.

Image Compression Ratio for the Non-Block Comparator Technique is given in
section 2.4.2.1. Image Compression Ratio for the Block Comparator Technique is
given in section 2.4.2.2. A comparison of the Image Compression Ratios obtained by
these techniques is given in section 2.4.2.3.

2.4.2.1 Image Compression Ratio for the Non-Block Comparator Technique. In
this section the formula is given for the Image Compression Ratio for the Non-Block
Comparator Technique. With the standard Non-Block Comparator Technique, the
compressed image data structure can be represented in the following format, as
discussed in section 2.3.4.

www.manaraa.com

46

nIl

EOI
Compressed Data Blocks

Digital Image Compression Techniques

JPEG Header Information

End Of Image Marker

The Image Compression Ratio (ICR) for the Non-Block Comparator Technique
(NBCT) can be represented by,

Ss .
ICR = rcung

NBCT SNBCT (2.21)

where,
ICRNBCT

SSrcimg

SNBCT

Image Compression Ratio (ICR) for the Non-Block

Comparator Technique,
Source image size in Bytes,

NBCT Compressed image size in Bytes.

SNBCT can be expanded further, as given in equation 2.22. Compressed block

data size can be represented by the ratio of original image block size and the Block
Compression Factor (BCF). Compression factor depends on the quality of compressed
image, specified by the user.

(2.22)

where,

SNBCT

SnIl
NB
SBlk
BCF
SEOI

NBCT Compressed image size in Bytes,

Size of JPEG Header Information in Bytes,

Number of Blocks in the image,
Size of one block in Bytes,

Block Compression Factor,
Size of End Of Image marker.

2.4.2.2 Image Compression Ratio for the Block Comparator Technique. In this
section the formula is given for the Image Compression Ratio using the Block
Comparator Technique (BCT). The Image Compression Ratio for Block Comparator
Technique is given by,

Ss .
ICR = rcung

BCT SBCT (2.23)

where,
ICRBCT

SSrcimg

SBCT

Image Compression Ratio for Block Comparator

Technique,
Source image size in Bytes,

BCT Compressed image size in Bytes.

www.manaraa.com

Digital Image Compression Techniques 47

For the Block Comparator Technique, the Compressed Image Data Structure can
be represented in many formats. Three different structures were selected for the
analysis. The Compressed image size for these Compressed Image Data Structures are
given in the following sections.

In all of these storage formats the compressed image blocks are stored in two
distinct groups. The frrst group consists of blocks that match with a unique block.
This group is called as the Similar Block Group (SBG).

The second group consists of all the unique blocks. This group is called as the
Unique Block Group (UBG). Then the data structure for the compressed image will
be as follows:

nu
SBG
UBG

EOI

JPEG Header Information
Similar Block Group
Unique Block Group
End Of Image marker

Compressed image size for Compressed Image Data structure-I: For the Block
Comparator Technique, the Compressed Image Data Structure-l (CIDS-I) is given in
table 2.10. The JPEG Header Information (illI) is the frrst item for the Non-Block
Comparator Technique. Following the header the Similar Block Group is stored. The
frrst component of this block is stored following the Similar Block Marker. In this
group each block is stored as an ordered pair comprising; Block Number followed by
the matching Unique Block Number. After the Similar Block Group comes the
Unique Block Group, where the frrst component is the Unique Block Marker. In the
Unique Block Group all unique blocks are stored in the correct sequence. The original
block number for each Unique Block can be identified by looking up the missing
block numbers in the Similar Block Group. The frrst block is always taken as Unique
Block-I. If it turns out that Block-2 and Block-3 match with Block-l then these will
be stored in the Similar Block Group. If Block-4 is the next unique block then this
block will be the second block stored in the Unique Block Group and Block-4 will be
missing from the Similar Block Group. The End Of Image (EOI) marker is stored at
the end of the file.

The size of the JPEG information header and the EOI marker are same as in the
JPEG compressed image. The size of block number is taken as sixteen bits because in
large images the number of blocks are more than 256. Size for various markers is
taken as eight bits. The size of the Compressed Image Data Structure-l for the Block
Comparator Technique can be written as,

8
SBCfl =8mI + 8 + NSB· (S + 8) + S + NUB· Blk + SEOI

SBM BNF UBNF UBM BeF

(2.24)

www.manaraa.com

48

where,

SBCfl

SJHI

SSBM
NSB

SBNF

SUBNF =

SUBM
NUB
SBlk
BCF

SEOI

Digital Image Compression Techniques

BCf Compressed image size for CIDS-l in Bytes,

Size of the JPEG Header Information in Bytes,

Size of the Similar Block Marker,

Number of Similar Blocks,
Size of the Block Number Field,

Size of the Unique Block Number Field,

Size of the Unique Block Marker,

Number of Unique Blocks,
Size of one block in Bytes,

Block Compression Factor,
Size of the End Of Image marker.

Table 2.10 Compressed Image Data Structure-1

Component Parameter Symbol Size
(Bytes)

JHI JPEG Infonnation Header JHI
SBG Similar Block Marker SBM I

Block Number Unique Block No BN, UBN 2+2
Block Number, Unique Block No BN UBN 2+2
.........

UBG Unique Block Marker UBM I
Unique Block Compressed data UBCD SBlk/CF
..........

EOI End of Image marker EOI I

Compressed image size for Compressed Image Data Structure-2: For the Block
Comparator Technique, the Compressed Image Data Structure-2 (CIDS-2) is given in
table 2.11. The CIDS-2 is similar to the CIDS-l except for the storage format of the
compressed data in the Unique Block Group. In CIDS-2 the compressed data for each
Unique Block is also stored as an ordered pair: Unique Block Number followed by the
Unique Block Compressed Data.

The size of each field is the same as in the Compressed Image Data Structure-I.
Size of the Unique Block Number Field is taken as sixteen bits. The size of CIDS-2
for the Block Comparator Technique can be written as,

Size of the Unique Block Number Field is taken as sixteen bits. The size of CIDS­
2 for the Block Comparator Technique can be written as,

S
SBCTZ = SJHI +S + NSB·(S +S) +S + NUB ·(S + Bile) + SEOI

SBM BNF UBNF UBM UBNF BCF

(2.25)

www.manaraa.com

Digital Image Compression Teclmiques 49

where,

SBCn

SJHI

SSBM
NSB
SBN

SUBN

SUBM
NUB
SBlk
BCF
SEOI

BCT Compressed image size for CIDS-2 in Bytes,

Size of JPEG Header Information in Bytes,

Size of Similar Block Marker,

Number of Similar Blocks,
Size of the Block Number Field,

Size of the Unique Block Number Field,

Size of the Unique Block Marker,

Number of Unique Blocks,
Size of one block in Bytes,

Block Compression Factor,
Size of the End Oflmage marker.

Table 2.11 Compressed Image Data Structure-2

Comp Parameter Symbol Size
~nent (Bytes)

JHI JPEG Information Header JHI
SBG Similar Block Marker SBM I

Block Number, Unique Block No BN,UBN 2+2
Block Number, Unique Block No BN,UBN 2+2
..........

UBG Unique Block Marker UBM I
Unique Block Number, Block Compressed data UBN,BCD 2, SBlk/CF
Unique Block Number, Block Compressed data UBN,BCD 2, SBlk/CF
...........

EOI End of Image marker EOI I

Compressed image size for Compressed Image Data Structure-3: The
Compressed Image Data Structure-3 (CIDS-3) is given in table 2.12. In CIDS-3 the
JPEG Header Information, Unique Block Group (UBG) and EOI marker are the same
as for CIDS-I. Following the header the Similar Block Group (SBG) is stored. The
SBG consists a number of Similar Block Lists (SBL). Each SBL starts with a Similar
Block Marker and a Unique Block Number followed by the list of similar Block
Numbers. The Similar Block Marker at the head of the next Similar Block list also
marks the end of the previous Similar Block list.

The size of CIDS-3 for Block Comparator Teclmique can be written as,

S
SBCf3=SJHI+NL*(S +S +nl*S)+S +NUB* Blk+ SEOISBM UBNF BNF UBM BCF

(2.26)

www.manaraa.com

50 Digital Image Compression Techniques

BCT Compressed image size for CIDS-3 in Bytes,

Size of the JPEG Header Information in Bytes,

Number of Similar Block Lists in SBG,
Number of Block Numbers, followed in each Unique

Block list,
Size of the Similar Block Marker,

Size of the Unique Block Number Field,

Size of the Unique Block Marker,

Number of Unique Blocks,
Size of one block in Bytes,

Size of the End Of Image marker.

where,

SBCT3

SJHI
NL
nl

SSBM

SUBNF =

SUBM
NUB
SBIk

SEOI

Table 2.12 Compressed Image Data Structure-3

Comp Parameter Symbol Size
onent (Bvtes)

JHI JPEG Information Header JHI
SBG Similar Block Marker SBM I

Unique Block Number, Block No, Block No, UBN, BN, 2+2+2 ...
Block No, BN ..

Similar Block Marker SBM 1
Unique Block Number, Block No, Block No, UBN, BN, 2+2+2 ...

IBlockNo, BN .. ,
UBG Uniaue Block Marker UBM I

Unique Block Compressed data UBCD SBlk/CF
EO! End of Imal!e marker EOI I

2.4.2.3 Comparison of Image Compression Ratios. Image Compression Ratio
(ICR) for Non-Block Comparator Technique is given in table 2.13 and graph of the
same is shown in figure 2.22. Image Compression Ratio for Block Comparator
Technique for three Compressed Image Data Structures (CIDS-l, CIDS-2 and CIDS­
3) are given in tables 2.14, 2.15, 2.16 and 2.17. In each of these tables, the values of
Image Compression Ratio are calculated for three image sizes, viz. 125 x 125, 625 x
423, and 1100 x 900. For each image size, the values of ICR are calculated for
different output image qualities, viz. 100, 75, 50 and 25 percent. For CID-3, the graph
of ICR Vs % quality for NSB = 10%, 30%, 50%, and 75% are shown in figure 2.23,
2.24, 2.25 and 2.26 respectively.

Conclusions are derived by comparing ICR values from all Compressed Image
Data Structures (CIDS) and by comparing ICR values from each CIDS separately.
The conclusions derived are given in the following sections.

Conclusions from all cms: From tables 2.13 to 2.17 we can see that the ICRs
increase as the image size increases irrespective of the quality of the output image.
For each image size the ICR increases with decrease in quality of the output image.

www.manaraa.com

Digital Image Compression Techniques 51

Conclusion for CIDS-l: From table 2.13 and tables 2.14 to 2.17 we can see that for
the CIDS-1 and quality = 100 Image Compression Ratio is slightly greater than the
same for the Non-Block Comparator Technique. For quality = 75 Image
Compression Ratio is almost equal to the same for Non-Block Comparator Technique.
For quality = 50 and 25 Image Compression Ratio values are less compared to the
same for the Non-Block Comparator Technique. This indicates that the size of the
compressed image using Compressed Image Data Structure-1 for Block Comparator
Technique is beneficial for image quality greater than 75% only.

Conclusions for CIDS-2: By comparing the ICR values of CIDS-2 and CIDS-1, we
can see that ICR values for CIDS-2 are less than those for CIDS-1 for all image sizes.
This is because the Unique Block Number is stored in the Unique Block Group. This
data structure is more robust than the CIDS-1 data structure, because all the blocks
numbers are included in the data structure.

By comparing Image Compression Ratio values of CIDS-2 and Non-Block
Comparator Technique, we can see that the Image Compression Ratio values of
CIDS-2 for quality = 100 are almost equal to that of Non-Block Comparator
Technique. For quality less than 100, Image Compression Ratio values are less than
the same for Non-Block Comparator Technique.

Conclusions for CIDS-3: By comparing Image Compression Ratio values of CIDS-3
with those for the other two data structures, we can f:ee that the ICR values for CIDS­
3 are greater in all cases.

By comparing CIDS-3 with Non-Block Comparator Technique, we can see that
the Image Compression Ratio values for CIDS-3 for quality = 100 and 75 are greater
than the same for Non-Block Comparator Technique. For quality = 50 the values are
almost equal. This indicates that the CIDS-3 data structure is better than the others for
quality greater than 50.

By comparing all three Compressed Image Data Structures, we can say that CIDS­
3 is the best of these three. Therefore, CIDS-3 data structure is chosen to measure the
improvement over the Non-Block Comparator Technique.

Image Compression Ratio Improvement Factor (ICRIF): The improvement in the
compression ratio is represented by a factor called the Image Compression Ratio
Improvement Factor (ICRlF). ICRIF can be defmed as the ratio of Image
Compression Ratio for Block Comparator Technique to the Image Compression Ratio
for Non-Block Comparator Technique, as given by,

ICRBCT
ICRlF = T.IC"'R....NB"""-'=C""'T-

(2.27)

www.manaraa.com

52 Digital Image Compression Teclmiques

where,
ICRBCT

Comparator Teclmique,
ICRNBCT

Comparator Teclmique.

Image Compression Ratio for the Block

Image Compression Ratio for the Non-Block

Table 2.18 shows the ICRIF for CIDS-3 using NSB = 75 graph of ICRIF versus
quality is shown in figure 2.27. From table we can see that the Image Compression
Ratio Improvement Factor (lCRIF) is almost equal for all image sizes irrespective of
the quality of output image. There is no benefit in using the Block Comparator
Teclmique for images with less than 50% quality. By using the Block Comparator
Teclmique we can get an improvement of 2.8 times over the Non-Block Comparator
Teclmique for quality = 100.

Table 2.13 Image Compression Ratio for Non-Block Comparator Technique

Number of Quality Compressed image Image Compression Ratio
Blocks NB % size for NBCT: SNBCT for NBCT: ICRNBCT
256 100 3450 4.529

75 993 15.735

50 642 24.338

25 501 31.188

4266 100 54778 4.895
75 13825 19.394

50 7974 33.625
25 5634 47.591

15594 100 199777 4.956
75 50074 19.771
50 28688 34.509
25 20134 49.171

Number of
Blocks - NB75 50 25

% Quality

Figure 2.22 ICR Vs quality for NBCT

www.manaraa.com

Digital Image Compression Techniques 53

Table 2.14 Image Compression Ratio for Block Comparator Technique using three
Compressed Image Data Structures for Number of Similar Block =10%

Numbe Qual Image Image Compresse Image
r of Blocks ity Compression Compression d image size Compression

NB % iRatio for CmS-l iRatio for cms- forCmS-3 Ratio for
(ICRBCn) 2 (lCRBCT2) (SBCn) CmS-3

(lCRBCn)

256 100 4.846 4.241 3176 4.920

75 15.379 10.586 968 16.142

50 22.321 13.470 648 24.113

25 27.221 15.111 522 29.933

4266 100 5.255 4.568 50179 5.343

75 18.925 12.273 13324 20.123

50 30.116 16.171 8051 33.303

25 39.448 18.523 5945 45.101

15594 100 5.321 4.624 182939 5.412

75 19.289 12.470 48212 20.534

50 30.862 16.460 28966 34.178

25 40.609 18.876 21267 46.551

l:
o
'iii
lila:::
!o
0.­E I

0.2
0-IIIGla:::
CD
III
.§

50

40

30

20

10

25

256

15594

4266

Number of Blocks ­
NB

Figure 2.23 ICR Vs quality for CIDS-3 (NSB = 10%)

www.manaraa.com

54 Digital Image Compression Techniques

Table 2.15 Image Compression Ratio for Block Comparator Technique using three
Compressed Image Data Structures for Number of Similar Block =30%

Numbe Qu Compre Image Image Image
r of Blocks ality ssed Image Compression Compression Compression

NB 0/0 size for Ratio for CmS-! Ratio for CmS-2 Ratio for CmS-3
CmS-! (lCRBCTt> (ICRBCT2) (ICRBCT3)

(SBCTl)

256 10 2775 5.631 4.987 5.930
0
75 1056 14.796 11.050 17.058
50 811 19.266 13.366 23.286
25 713 21.914 14.589 27.269

4266 10 43516 6.162 5.418 6.545
0

75 14851 18.054 12.876 21.801
50 10756 24.928 16.029 32.714
25 9118 29.406 17.768 40.885

15594 10 158612 6.242 5.486 6.632
0
75 53819 18.395 13.086 22.260
50 38848 25.484 16.315 33.555
25 32860 30.128 18.101 42.099

c
o
~lila::
!u
Q.-
E 'o .2
u'l;
Gla::
Cl
ca
.5

50

40

30

20

10

25

256

4266

Number of Blocks·
NB

Figure 2.24 ICR Vs quality for CIDS-3 (NSB = 30%)

www.manaraa.com

Digital Image Compression Teclmiques 55

Table 2.16 Image Compression Ratio for Block Comparator Technique using three
Compressed Image Data Structures for Number of Similar Block =50%

Numbe Qual Image Image Compres Image
r of Blocks ity Compression Compression sed image Compression

NB % Ratio for Ratio for cms- size for Ratio for cms-
CmS-l 2 (ICRBCn) CmS-3 3 (ICRBCTJ)

(ICRBCTl) (SBCT3)

256 100 6.718 6.052 2078 7.519

75 14.243 11.548 849 18.404

50 16.947 13.264 674 23.182

25 18.361 14.115 603 25.912

4266 100 7.446 6.657 31758 8.443

75 17.262 13.542 11281 23.768

50 21.266 15.890 8348 32.118

25 23.442 17.074 7178 37.354

15594 100 7.548 6.746 115585 8.565

75 17.580 13.768 40734 24.304

50 21.701 16.173 30041 32.955

25 23.945 17.387 25764 38.426

40

g 35
'iii 30
I/lo::
l!! 0 25a,-
E' 20
0.2
o iii 15
~ 0:: 10
III

.5 5
o
100

25

15594

4266

Number of Blocks -

256 NB

Figure 2.25 ICR Vs quality for CmS-3 (NSB = 50%)

www.manaraa.com

56 Digital Image Compression Techniques

Table 2.17 Image Compression Ratio for Block Comparator Technique using three
Compressed Image Data Structures for Number of Similar Block =75%

Numbe Qual Image Image Compres Image
r of Dlocks ity Compression Compression sed image Compression

ND % Ratio for Ratio for CIDS-2 size for ~tio for CIDS-3
CIDS-l (ICRDCn) CIDS-3 (ICRDCTJ)

(JCRDCn) (SBCT3)

256 100 8.863 8.263 1387 11.265

75 13.611 12.245 772 20.240

50 14.727 13.141 685 22.810

25 15.244 13.552 649 24.076

4266 100 10.072 9.325 20228 13.255

75 16.362 14.478 9995 26.826

50 17.965 15.719 8525 31.452

25 18.698 16.278 7940 33.769

15594 100 10.222 9.460 73470 13.475

75 16.657 14.726 36049 27.463

50 18.304 15.998 30703 32.244

25 19.057 16.570 28565 34.658

35

S 30

'~a:: 25
~u
Q. - 20E •
o ,51 15
Uc;j
~ a:: 10
III
.§ 5

o
100

25

15594

4266

Number of Blocks·

256 NB

Figure 2,26 ICR Vs quality for CIDS-3 (NSB = 75%)

www.manaraa.com

Digital Image Compression Techniques 57

Table 2.18 ICRIF for the BCT using the Compressed Image Data Structures-3 for
NSB = 75%

Numb Qu Image Image Image
er of ality Compression Compression Ratio Compression

Blocks 0/0 Ratio for NBCT for CIDS-3 Ratio
NB (ICRNBCT) (lCRBCT3) Improvement

Factor ICRIF
256 100 4.529 11.265 2.487

75 15.735 20.240 1.286

50 24.338 22.810 0.937

25 31.188 24.076 0.772

4266 100 4.895 13.255 2.708

75 19.394 26.826 1.383

50 33.625 31.452 0.935

25 47.591 33.769 0.710

15594 100 4.956 13.475 2.719

75 19.771 27.463 1.389

50 34.509 32.244 0.934

25 49.171 34.658 0.705

3

2.5

2
lA.
ii2 1.5
~

0.5
NB=256

QualityQ 100

Figure 2.27 ICRIF Vs quality

www.manaraa.com

58

2.5 Summary

Digital Image Compression Techniques

Various digital image compression techniques such as Vector Quantisation (VQ),
fractal, wavelet and JPEG were explained in this chapter. The JPEG technique is used
in many applications. Therefore the JPEG algorithm is chosen for our research
purpose. The JPEG algorithm can be implemented in hardware as well as software.
Many of the limitations of hardware implementation can be overcome in software
based implementations.

In the JPEG algorithm all image blocks are processed individually. These blocks
of compressed image are stored sequentially. In many types of images, there is the
possibility of having one or more similar blocks in the image. Improvement in
performance of the compression algorithm can be achieved by locating similar blocks
in the image. The Block Comparator Technique was proposed to enhance the
performance of the JPEG algorithm. An overview of the Block Comparator
Technique was given in this chapter.

The Block Comparator Technique improves the speed of the compression and
decompression operations and reduces the size of the compressed data file. These two
factors have been discussed in this chapter. Improvement in the speed of Block
Comparator Technique is expressed in terms of Speed Improvement Factor. Using
analytical methods, the Speed Improvement Factor for the Block Comparator
Technique using Divide and Conquer method was found to be suitable for all image
sizes.

Three types of Image Data Structures were introduced for the Block Comparator
Technique. By comparing the three Image Data Structures, it was concluded that the
Image Data Structure-3 is more suitable for all image sizes. The Image Compression
Ratio improvement Factor of Image Data Structure-3 == 2.8. This indicates that the
compressed image size for CIDS-3 is 2.8 times less than the compressed image size of
the Non-Block Comparator Technique.

From these speed and compressed image size comparisons we can conclude that
the Block Comparator Technique is a useful technique to enhance the JPEG
compression algorithm. This Block Comparator Technique can be implemented on
parallel computers to speedup the operation further. This is explained in the next
chapter.

www.manaraa.com

3 PARALLEL PROCESSING PLANS
FOR DIGITAL IMAGE COMPRESSION

TECHNIQUES

3.1 Introduction

This chapter describes methods used for parallel processing of digital image
compression algorithms. Various types of parallel computers and parallel processing
Plans for digital image compression are described.

Parallel computers can be classified based on memory access technique, network
topology and some other issues. Three parallel computers were chosen for the
experimentation, each with a different memory access architectures, viz. the Mercury
system with a distributed memory architecture, the Shiva system with a shared
memory and the Param ·system with a hybrid memory architecture.

Digital image compression can be implemented in a variety of ways on parallel
computers. Each uniquely identifiable way of implementation is called as a 'Plan'.
Some of these Plans were implemented on available parallel computers and other
Plans were simulated using the Network 11.5 simulation package. Performance of
these Plans can be evaluated in terms of speedup, scaleup, and efficiency.

Parallel processing is often used to increase the computation speed of a task by
dividing the task into several sub-tasks and allocating multiple processors to execute
multiple sub-tasks simultaneously. A wide variety of parallel computers are used for
parallel processing. Section 3.2 briefly describes the various parallel computer
architectures and parallel programming languages.

Digital image compression can be implemented on parallel computers in a variety
of ways. Each way of performing image compression is called as a 'Plan' in this book.
Each Plan used for digital image compression on a parallel computer can be specified
by a 6-tuple consisting of the image compression technique, block dependency, image
partitioning method, memory architecture, memory organisation / network topology
and the number of processors. Section 3.3 describes these Plans in detail. Some of
these Plans were implemented on available parallel computers such as Mercury, Shiva
and Param systems. Section 3.4.1 describes the implementation detail on these
parallel computers. Other Plans were simulated using the Network 11.5 simulation
package. Simulation models for these Plans are described in section 3.4.2.

These plans were evaluated in terms of speedup, scaleup, and efficiency. These
terms are defmed in section 3.5.

59

www.manaraa.com

60

3.2 Parallel Computer Architectures

Parallel Processing Plans

One of the main aims of this research project was to investigate the application of
parallel computers architectures to speedup digital image compression operations.
Parallel computer architectures can be classified based on factors described below
[Krishnamurthy, 89].

Granularity: The number of processors used in a system is a measure of its
granularity. Granularity can be classified as fme grain, medium grain, and
coarse grain. In a fme grained parallel computer several thousand processors are
used. In a medium grained parallel computer a few tens to several hundred
processors may be used. Whereas, in a coarse grained parallel computer only a
few processors are used.

2 Interconnection topology: The processors can be interconnected to form a
network with topologies such as Ring, Array, Mesh, Tree, Cube, Pyramid etc.

3 Task allocation: Task allocation on any architecture is a mapping of the
program onto the available machine resources. This can be done statically or
dynamically. In a static mapping all the tasks are allocated prior to program
execution, based on the system topology. In dynamic allocation, the tasks may
be migrated from one processor to another to balance the work load.

One of the most widely used taxonomy for parallel architecture was proposed by
Flynn. In this taxonomy singularity or multiplicity of instruction stream and data
stream is the basis for classification. This gives us four possible classes of parallel
computers, namely [Krishnamurthy, 89],

I Single Instruction stream Single Data stream (SISD) machines,
2 Single Instruction stream Multiple Data stream (SIMD) machines,
3 Multiple Instruction stream Single Data stream (MISD) machines,
4 Multiple Instruction stream Multiple Data stream (MIMD) machines.

A SIMD machine is a computer system consisting of a single control unit, N
processors, M memory modules, and an interconnections network. The instructions
are broadcast from the control unit to all the processors and processors execute the
same instructions at the same time [Siegel, 85].

MIMD architectures operate in parallel in an asynchronous manner and generally
share data either thiough a common memory or by passing data over communication
channels. Some of the commercially available MIMD computers are CM-5, NCUBE,
iWarp, iPSC, Paragon, Meiko computing system, Teradata etc. [Hord, 93].

Based on memory architecture parallel computers are classified as shared memory,
distributed memory, and hybrid memory architectures. These are explained in the
following sections.

www.manaraa.com

Parallel Processing Plans

3.2. 1 Shared Memory Architecture

61

In a shared memory architecture the processors use a shared memory space for
passing data and messages. Shared memory architecture is further divided into global
memory architecture and global-plus-local memory organisation. In the global
memory organisation, there is a only one main memory module and all processors
access the same global memory. Whereas, in a global-plus-local memory organisation
each processor has its own local memory, and can also access the main global
memory. These two types ofarchitectures are shown in figure 3.1.

Main Global Memory

SHARED •..... •
...... ~ l""v ~

?~
v "

PEl PE2 PEn

(a)

Main Global Memory

SHARED BUS

Local Memory

(b)

Local Memory Local Memory

Figure 3.1 Shared Memory Architectures

a) with global memory organisation b) with global-plus-local memory organisation

www.manaraa.com

62

3.2.2 Distributed Memory Architecture

Parallel Processing Plans

In the distributed memory architecture all processors have only their own local
memory. Processors can be connected in many different interconnection topologies.
Based upon the interconnection topology, distributed memory architectures can be
classified as Tree, Mesh, Cube, and Pyramid architectures. These topologies with
various number of processors are shown in figure 3.2,3.3,3.4 and 3.5. These figures
show the interconnection schemes with each processor having upto four links. It is
easy to construct these configurations in a Transputer based system, since each
Transputer T805 has got four links.

Figure 3.2 shows the interconnection schemes using Tree topologies with three
processors, nine processors, fifteen processors and twenty seven processors. In all
these topologies, the host processor is connected to two other processors. The host
processor is mainly used for allocating tasks and collating the information from all
other processors. Slave processors are named as PE. These slave processors are used
for processing the sub-tasks. In Tree topology all slaves are not interconnected. This
type of topology is suitable for applications with non-interdependent tasks.

(a)

(b)

www.manaraa.com

Parallel Processing Plans

(c)

Host
Processor

63

(d)

Figure 3.2 Tree topologies with

(a) three processors
(c) fifteen processors

(b) nine processors
(d) twenty seven processors

www.manaraa.com

64

(a)

(b)

(c)

Parallel Processing Plans

Figure 3.3 Mesh topologies with

(a) five processors (b) ten processors (c) seventeen processors

www.manaraa.com

Parallel Processing Plans 65

Figure 3.3 shows the interconnection schemes using Mesh topologies with five
processors, ten processors, and seventeen processors. The host processor in these
topologies is connected to two slave processors. All slave processors are
interconnected in A Mesh structure. This type of Mesh topology is mainly used for
applications which have interdependent tasks. The Mesh topology can easily be
converted into a Torus topology. In Torus topology last column processors are
connected to the first column processors and last row processors are connected to first
row processors. Torus topology is often used in image processing applications.

Figure 3.4 shows the interconnection schemes using Pyramid topology with five
processors and twenty one processors. In this topology, the host processor is
connected to four slave processors. The twenty one processors topology is similar to a
Quad-Tree topology where each processor is connected to four other processors. This
topology is suitable for applications with both interdependent and non-interdependent
task.

(a)

(b)

Figure 3.4 Pyramid topologies with

(a) five processors (b) twenty one processors

www.manaraa.com

66 Parallel Processing Plans

Figure 3.5 shows the 3-dimensional Cube architecture with nine processors, where
host processor is connected to four slave processors.

Interconnection schemes described above are only indicative of the manner in
which various topologies can be constructed. Different sets of interconnection
schemes can be generated by varying the number of connection available of the
processing elements.

Host
Processor

PEl

PE3

Figure 3.5 Cube topology

3.2.3 Parallel Programming Languages

PE2

PT4

PE6

PE8

Parallel programming languages can be classified into Procedure Oriented,
Message Oriented and Operation Oriented languages [Fleming, 88]. Procedure
Oriented Languages are best suited to uni-processors and are used when data is passed
through shared variables. In a Message Oriented Languages data can be passed with
or without shared memory. Operation Oriented languages are suitable for
programming on distributed memory architectures.

Some of the commonly used parallel programming languages are Fortran,
OCCAM, C++, C. The C programming language was chosen for the implementation,
because C code can be easily ported to other parallel computers and it is supported by
most of the operating systems.

www.manaraa.com

Parallel Processing Plans

3.3 Parallel Processing Plans for Digital Image Compression
Techniques

67

Digital image compression technique can be implemented on parallel computers in
many different ways. A specific way of implementation is called as a 'Plan'. Each Plan
used for digital image compression on a parallel computer can be specified by a 6­
tuple consisting of Image Compression Technique (lCT), Block Dependency (BD),
Image Partitioning Method (IPM), Memory Architecture (MA), Memory Organisation
/ Network Topology (NT) and the Number of Processors (NP). Plan (P) thus can be
represented as:

P(ICT, BD, IPM, MA, MOINT, NP)
where,

P is Plan for implementation,
ICT is the Image Compression Technique used for image processing,
BD is Block Dependency used for image processing,
IPM is Image Partitioning Method used for image processing,
MA is Memory Architecture used for parallel processor,
MOINT is Memory Organisation / Network Topology used for parallel

processor,
NP is Number of Processors.

These factors are explained in the following sections.

3.3.1/mage Compression Technique (ICT)

Image Compression Technique can be classified into conventional image compression
technique and block comparator enhancement to the JPEG technique. The
conventional image compression technique is based on the JPEG algorithm without
any block comparisons. The conventional technique is called as the Non-Block
Comparator Technique (NBCT) in this book. The block comparator enhancement to
the JPEG algorithm, based on block comparison and the JPEG algorithm, was
explained in section 2.4. This technique is called as the Block Comparator Technique
(BCT) in this book. The structure of classification of image compression technique is
shown in figure 3.6.

Non-Block Comparator
Technique (NBC1)

Image Compression
Technique (ICn

Block Comparator Technique'-----.
(BCn

Figure 3.6 Classification of Image Compression Technique

www.manaraa.com

68

3.3.2 Block Dependency (BD)

Parallel Processing Plans

Most of the digital image compression algorithms use a block of 8 x 8 samples. To
obtain a smoothing effect, the value of the neighbouring samples for each sample
need to be considered. When the value of neighbouring samples are utilised the
processor processing an image block, needs access to the edge samples in its
neighbouring blocks. This is called Inter-Block Dependency (mD) method. If
smoothing effect is not required then samples in neighbouring blocks need not be
accessed. This method is called as Non-Inter-Block Dependency (NffiD) method in
this book.

On parallel computers, task allocation can be done in two ways in the Inter-Block
Dependency method. In this method the basic blocks are called the Root Objects and
edge sample of neighbouring blocks are called Leaf Objects. One way of allocating
compression tasks is to allocate the task with only the Root Objects transmitted to the
respective processors. Then the Leaf Objects (neighbouring samples) can be accessed
from neighbouring processors. Since it requires run-time communication between
processors it is called Inter-Processor Communication (IPC) method. The second way
of task allocation is to allocate task with the Root Object along with the Leaf Objects.
In this method there is no need of accessing neighbouring samples from other
processors at run-time, eliminating the need for inter-processor communication. This
method is called Non-Inter-Processors Communication (NIPC) method.

Classification ofBlock Dependency on parallel computers is shown in figure 3.7.

Inter-Processor
ommunication

(IPC)

Inter-Block
Dependeny (IBD)

Block
Dependency (BD)

Non-Inter-Block
Dependency (NIB)

Figure 3.7 Classification of Block Dependency

3.3.3 Image Partitioning Method (IPM)

Non-Inter-Processor
ommunication

(NIPC)

Most of the digital image compression algorithms use a block of 8 x 8 samples.
Choice of an Image Partitioning Method based on blocks of an image is an important
step, because it determines system efficiency, processing workload balance and the
amount of usable parallelism.

www.manaraa.com

Parallel Processing Plans 69

Image Partitioning can be done in two ways. One method is to divide the complete
image into a number of blocks. These blocks can be grouped into tasks equal to the
number ofprocessors. This method is called Block Based Image Partitioning (BBIP).

Second method of Image Partitioning can be done by dividing the complete image
into a number of blocks such that each block is weighted in terms of intensity. The
blocks can be grouped into a tasks which consists of equal intensity values. This
method is called Balanced Workload Image Partitioning (BWIP).

Classification of Image Partitioning Method is shown in figure 3.8.

Partitioning
Method (PM)

Block Based Image Partitioning

-[

(BBlP)

Balanced Workload Image Partitioning
(BWIP)

Figure 3.8 Classification of Image Partitioning Method

3.3.4 Memory Architecture (MA)

Based on memory access parallel computers are broadly classified as shared memory
architecture, distributed memory architecture, and hybrid memory architecture as
discussed in section 3.2. In this research shared and distributed memory architectures
are primarily used. Classification structure of Memory Architecture is shown in figure
3.9.

Shared Memory
Architecture (SMA)

Memory Architecture (MA) ----j----.

Figure 3.9 Classification of Memory Architecture

Distributed Memory
Architecture (DMA)

Hybrid Memory
Architecture (HMA)

www.manaraa.com

70

3.3.5 Memory Organisation / Network Topology (NT)

Parallel Processing Plans

Processors can be connected in many different interconnection topologies. Based
upon the interconnection topologies, shared memory architecture can be classified as
global memory organisation and global-plus-local memory organisation. Distributed
memory architectures can be classified as Tree, Mesh, Cube, and Pyramid
architectures. Classification structure of Memory Organisation / Network Topology is
shown in figure 3.10.

Memory
Organisation /

Network
Topology
(MOINT)

Shared Memory Architecture with Global
Memory (SGM)

Shared Memory Architecture with
Local-Plus-Global Memory (SLgM)

istributed Memory Architecture with Tree Totology
(DTrl)

Distributed Memory Architecture with Torus Topology
DToT)

Distributed Memory Architecture with Cube
opology (DCul)

Distributed Memory Architecture with Pyramid
Topology (DPyl)

Figure 3.10 Classification of Memory Organisation I Network Topology

3.3.6 Number ofprocessors (NP)

In a shared memory architecture, memory organisation can be constructed with any
number ofprocessors from one to N.

In distributed memory architecture number of processors are fixed for a
symmetrical topology. For example symmetrical tree topology can be constructed
with 3,9, IS, or 27 processors. Symmetrical torus topology can be constructed with 5,
9, and 17, symmetrical cube topology may have 5 or 28 processors, whereas
symmetrical pyramid topology can have 5, 9, or 21 processors. The number of
processors used in different symmetrical network topologies is shown in figure 3.11.

www.manaraa.com

Parallel Processing Plans

Number of
Processors (NP)

SGM 2, 4, 6, 10, 15,20

SLgM 2, 4, 6, 10, 15,20

DTrT 3,9, 15,27

DToTs,9,17

DCuTs, 28

DPyTs, 9, 21

71

Figure 3.11 Classification of Number of Processors

3.4 Implementation of Plans on Parallel Computer
Architectures

Some of the digital image compression Plans were implemented on parallel
computers, while many others were simulated using the Network 11.5 package. A brief
introduction to the computers used for implementing some of the Plans is given in
section 3.4.1. Simulation steps used for modelling and simulating other Plans are
given in section 3.4.2.

3.4.1 Implementation of Digital Image Compression Plans on
Parallel Computers

Plans for Non-Block Comparator Technique (NBCT) were implemented on parallel
computers such as, Mercury system, Shiva system, and Param system. These
computers are course grained and are described in the following sections.

Mercury system: The Mercury system was designed and developed by the
Collaborative Information of Technology and Research Institute (CITRI), Melbourne
[Bevinakoppa, 92]. It is a message passing parallel computer. Mercury system
comprises four T800 transputers and sixteen T805 transputers and operates as back­
end processor to a 386 based host processor. The JPEG algorithm was implemented
on various nurnber of processors on Mesh topology distributed memory architecture
using the Plan,

Mercury Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP)

where,
NP = 1 1213 1519117,
Image Size = 125 x 1251228 x 2311625 x 423.

www.manaraa.com

72 Parallel Processing Plans

This Plan was implemented on the Mercury system with NP = 1, 2, 3, 5, 9, and 17
for three different three image sizes. Thus a total of eighteen (6 x 3) Plans were
implemented. The implementation procedure of these Plans on the Mercury system is
explained in detail in section 4.2.

Shiva system: The Shiva system was developed at Defence Science and Technology
Organisation (DSTO) Australia [Nelson, 92b]. This system is a multiprocessor
designed with shared memory architecture. It can accommodate upto eighteen Intel's
i860 processor boards. The JPEG algorithm was implemented on this global-plus­
local memory architecture machine using the following Shiva Plans. Details of
implementation of these nine Plans are given in section 4.3.

Shiva Plans := P(NBCT, NIPC, BBIP, SMA, SLgM, NP)

where,
NP=11213
Image Size = 125 x 1251228 x 2311625 x 423.

Param system: The Param system was designed and developed by the Centre for
Development of Advanced Computing (C-DAC), India [Bhatkar, 94]. Param is a
multiprocessor system that uses message passing, as well as shared memory parallel
programming. Each node of the Param system contain four Transputers and one i860
processor. The JPEG algorithm was implemented on this hybrid architecture with
various number of processor connected in Mesh topology. Plans used on this
architecture may be represented by,

Param Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP)

where,
NP=11213,
Image Size = 125 x 1251228 x 231 1625 x 423.

The Detail of these nine implementations are explained in section 4.4.
These three machine were used to implement a total of twenty six Plans. More than

two hundred other Plans were simulated using the Network 11.5 simulation package.

3.4.2 Simulation of Parallel Processing Plans for Image
Compression

Simulation allows the assessment of potential performance before operating newly
designed systems. It permits the comparison of various operating strategies of a
system when the real system is not available. It allows measurement of parameters
such as the time taken for various operations,'utilisation of various components and
system efficiency.

Network 11.5 package was used to model the operation of various Plans for parallel
processing of the JPEG algorithm. The execution times of these Plans were obtained

www.manaraa.com

Parallel Processing Plans 73

by running various simulations on the Network U.s models. Simulation results are
given in chapter 5. The procedure adopted for developing the models, and running the
simulations is explained in this section.

Model building and simulation involves ten steps, viz. problem formulation, model
building, data collection, model translation, model verification, model validation,
experiment planning, experimentation, analysis of results, and documentation
[Sharda, 95]. Each of these steps are described briefly in the following sections.

3.4.2.1 Problem Formulation: The first step in building a model is to make a clear
statement of the probiem. This includes stating the objectives of the modelling and
simulation project. An accurate and precise problem statement is very essential for a
systematic and smooth operation of the simulating process.

The main aim of our simulation work is to test the operation of image compression
algorithms on different parallel computer architectures. To systematise the modelling
and simulation work the idea of a Plan was introduced, in section 3.3. Each Plan was
translated into a model using the Network 11.5 package. Performance figures for these
Plans were obtained by running simulations on these models.

3.4.2.2 Model Building: There can be many different types of models such as
descriptive models, physical models, mathematical models, flow charts, schematics
and computer based models. The computer based models was chosen for discrete
event simulation.

The criteria used in selecting the best type of model are [Leigh, 83]:
• Design a model that could be used for different applications with some variations

in the model [Reitman, 81].
• Simulation modf'ls may work for some specific real systems and may not work

for other systems. Because, hidden critical assumptions may cause the model to
diverge from reality. Therefore, it is a better idea to design a model for a specific
problem with all the required parameters.

• The model output should be close to the expected output value. If not, the above
steps need to be followed again from the beginning.

The various Plans, mentioned in section 3.3, were modelled for parallel processing
of the JPEG algorithm. The following steps were followed for each of the models
built.

3.4.2.3 Data Collection: Data for various parameters of the model e.g. that of a
parallel computer system can be collected from various sources. Data, such as values
of various parameters of the model, may either have a single value or a range of
values. These values can be collected through literature survey and/or initial
experimental results.

Data required for modelling the execution of Digital Image Compression
techniques on parallel computers comprises data related to different compression
techniques, and data required for modelling parallel computers. For the Non-Block
Comparator technique data was collected from the existing JPEG algorithm described
in the current literature. For the Block Comparator technique data was obtained from
the experimental results, by running the block comparison step on Sparc II processor

www.manaraa.com

74 Parallel Processing Plans

several times. From the experimental results it was found that parameters, such as
execution time, followed Normal Distribution.

Distributed, shared, and hybrid memory architectures were used for modelling
some of the Plans. The parameters required for modelling these architectures were
taken from the manufacturer's specification for the three parallel machine (Mercury,
Shiva, and Param) described in section 5.2.

3.4.2.4 Model Translation: Next step is to translate the model into a form which can
be processed on a computer. Model translation can be done in two ways, either by
using a suitable computer language, or by using a simulation package.

Simulation programs can be written in high level programming languages such as
Fortran or Pascal. Some languages are designed specifically for simulation, such as
SimSript, GPSS, Simula [Bratley, 83] [Naylor, 68]. A special simulation language
such as Continuous System Simulation Language (CSSL) or Modified Integration
Digital Analogue Simulator (MIDAS) is extremely easy to use [Stephenson, 71].

Some simulation packages target towards specific application areas are also
available. For example Network 11.5, COMNET 11.5 and SIMLAN II can be used to
model computer networks. Network 11.5 simulation package was chosen for
simulation of digital image compression techniques on parallel computers. Network
11.5 is described in the following section.

Network D.5 simulation package: Network 11.5 is a simulation package which takes
in the description of the computer hardware and software and gives reports on
measures such as hardware utilisation, software execution, times taken for message
delivery, contention of memory, total system performance etc [CACI, 94]. It has an
interactive graphical interface and can generate diagrams of the computer, storage
devices, and transfer devices. Network 11.5 models the interactions between all the
devices in the system.

Network 11.5 package has three main functions, viz., system description, system
simulation and system analysis. In system description, all the devices or components
are represented by graphical icons and their attributes can also be specified via a
graphical interface. Simulation results can be analysed after running various
experiments on the models. Network 11.5 facilitates this analysis through animation,
plot of device status and reports.

There are two categories of entities in Network 11.5; hardware and software.
These are described in following sections.

Hardware description on Network 11.5: Hardware devices are modelled as one of
the three building blocks available in Network n.5; these are, Processing Element
(PE), Transfer Device (TD), and Storage Device (SD), depending on the function of
the device being modelled.

The Processing Element building block can be used to simulate any intelligent
hardware devices such as bus controller, display controller, and Central Processing
Unit (CPU). A PE is characterised by parameters such as basic cycle time, message
list size, I/O setup time, time slice, interrupt overhead, input controller, and
instruction repertoire. The instruction repertoire is classified into four groups of

www.manaraa.com

Parallel Processing Plans 75

instructions; processing instructions, read/write instructions, message instructions and
semaphore instructions.

Transfer Devices are the links between Processing Elements and Storage Devices
or between two Processing Elements. Transfer Devices are characterised by
parameters such as transfer speed, transfer overhead, number of words, number of
blocks and protocol defmition. A message instruction is used to move the data
between two PEs and read/write instructions are used to move the data between PE
and storage device. Network 11.5 automatically computes the actual time to send the
data, and organises the data transfer according to the specified transfer protocol. The
transfer protocol attribute may be set to model First Come First Serve (FCFS),
collision, token ring, token bus, priority, aloha, and other protocols.

A Storage Device (SD) can be connected to more than one Processing Elements.
Storage Devices are used to store data in files. The capacity of these is measured in
bits. Read / write instructions are used to read the data from file and write the data to a
specified file. If a specified file does not exist, Network 11.5 gives a warning message
at run time. Only a portion of the data can be accessed at any time. If the file structure
is yet to be determined or is not significant to the simulation, files can be read from, or
write to, a general storage (GS). The general storage keeps track of the number of bits
stored.

Software description on Network 11.5: In a Network 11.5 based simulation,
algorithm (software) is modelled in the form of software modules. Each module
contains a list of PEs on which it may execute, a description of when it may run i.e.
module preconditions, what it is to do when running i.e. instruction list, and which
other modules to start upon completion i.e. successors. Each module goes through
four cycles, these are;

1. Check preconditions
2. Once all preconditions are met queue up for PEs
3. When the PE becomes available execute instructions from its instruction list.
4. After the module has issued the last instruction in its instruction list, choose its

successor modules, if any.

3.4.2.5 Model Verification: The purpose of the verification step is to ensure that the
model behaves as planned and that it is a true representation of the system being
modelled [Roberts, 83].

Network 11.5 facilitates verification by providing graphical output for the hardware
and software components of the model. The complete (hardware plus software) model
can be verified by running animation. This enables visualisation of the modelled
system in operation. The operation of each implementation can be seen visually and
can be compared against the planned model. The animation operation can be
performed as a step-by-step operation or as a continuous operation.

3.4.2.6 Model Validation: A model can be validated by proving that the model is a
correct representation of the real system. There are various techniques for validation
ie. mathematical technique, experimental, or statistical. The best way to validate a
model is to compare the results of the simulation with results produced by the real

www.manaraa.com

76 Parallel Processing Plans

system operating under the same conditions. If the compared result is within +/- 10%
of the predicted value then the model is said to be validated.

In our research some of the Plans were implemented on real systems such as
Mercury system, Shiva system, and Param system. The same Plans were simulated on
Network 11.5 package. Validation for our system was done by comparing the
experimental results obtained on the real systems with the results obtained from the
Network 11.5 based modules.

3.4.2.7 Experiment Planning: To run a series of experiments we must plan for the
values over which the variables would be varied; because only a fmite number of
experiments can be ran on each model. To draw a useful conclusion, for some system
we may be able to plan the experiment before the simulation starts. For complex
systems, the later experiments have to be planned based on experience from the initial
experimental results.

For our simulation, various Plans were simulated. For each Plan the Number of
Processors parameter was varied from low values to high values till the speedup
started decreasing. From these series of experiments the speedup and scaleup
performance measures were determined.

3.4.2.8 Experimentation: A total of ten Plans were modelled, and, on an average,
thirty experiments were run for each Plan. Therefore, a total of three hundred
experiments were run on the Network 11.5 based models.

3.4.2.9 Analysis of Results: A vast volume of data is generated from the large
number of experiments carried out. This data is plotted in a series of graphs to be able
to study this data. These graphs are then analysed to derive conclusions.

3.4.2.10 Documentation: The output data produced by these experiments must be
well documented. Documentation is essential for reuse and maintenance of the model.

In our system all the Plans which are represented in graphical objects were
documented, and were stored on a computer disk using ABC flow chart. The
experimental results obtained for all the Plans were maintained on disk using Excel
spreadsheet. Speedup were calculated using the spreadsheet software and graphs of
each Plan were drawn using Microsoft Draw.

3.5 Performance Measures

Parallel processing performance is measured in terms of speedup, scaleup and
efficiency of the system. These terms are defmed in the following sections.

Speedup of a parallel processor: Speedup for N processors is defmed as the time
taken by a single processor divided by the time taken by N processors [Kumar, 94].
Speedup (SN) ofparallel processor is given by,

www.manaraa.com

Parallel Processing Plans

(3.1)

77

Speedup for N processors,

Time taken by a single processor,

Time taken by N processors.

Speedup curves can be of one of three types: superlinear, linear or sublinear as
shown in figure 3.12.

Linear speedup is obtained when the improvement in performance is proportional
to the number of processing elements in the system. Superlinear speedup is obtained
when the speedup curve is above the linear curve. But, in most of the real
implementations, linear or superlinear speedups cannot be obtained due to
communication overhead. When the speedup curve lies below the linear curve
sublinear speedup is obtained.

Superlinear Speedup

Speedup-S

Linear
Speedup

Sublinear Speedup

Number ofProcessors-NP

Figure 3.12 Speedup graph

Scaleup: For sublinear speedup, initially the speedup increases as the number of
processors in the system increases, and at some point the speedup starts decreasing
with further increase in the number of processors, as shown in figure 3.13. Scaleup of
a parallel architecture is a function of the maximum number of processors at which
the speedup starts decreasing. For brevity, scaleup is defmed as the number of
processors at the point of maximum speedup.

www.manaraa.com

78

Speedup-S

Number of Processors-NP

Figure 3.13 Speedup graph showing scaleup

Parallel Processing Plans

Scaleup

Efficiency: Efficiency (11) is defmed the average speedup of each processor in a
parallel processor, and is given by,

11

where:

11
SN
N

3.6 Summary

(3.6)

Efficiency,
Speedup of the parallel processor,

Number ofprocessors.

Digital image compression can be implemented on parallel computers to speedup the
operation. This chapter explained the different types ofparallel computers and parallel
programming languages. Various Plans for digital image compression on parallel
computers were given. Some of these Plans were implemented on available parallel
computers such as, Mercury, Shiva and Param systems. Some other Plans were
simulated using Network 11.5 simulation package.

Performance measures such as speedup, scaleup, and efficiency for parallel
architectures were defmed. These performance measures will be used in chapter 5 to
evaluate the performance of various Plans for the parallel processing of JPEG
algorithm.

www.manaraa.com

4 IMPLEMENTATION OF THE JPEG
ALGORITHM ON THREE PARALLEL

COMPUTERS

4.1 Introduction

This chapter explains the hardware architecture and implementation of the JPEG
algorithm on the parallel computer systems; Mercury, Shiva and Paramo

The Mercury system uses a message passing distributed memory architecture. The
Shiva system is a shared memory parallel architecture and has a torus interconnection
topology. The Param system has a hybrid architecture, with distributed as well as
shared memory.

The JPEG algorithm was implemented on the three above mentioned parallel
computers with different image sizes on various sized networks. This chapter
describes the implementation procedure and the experimental results obtained on each
of these systems.

This chapter describes the implementation of the JPEG algorithm on three parallel
computers namely; Mercury system, Shiva system and Param system.

The Mercury system was designed and developed by the Collaborative Information
Technology and Research Institute (CITRI), Melbourne. It is a distributed memory,
message passing parallel computer. The Mercury system comprises of twenty
transputers and is used as a back-end processor to a personal computer.

The Shiva system was developed at the Defence Science and Technology
Organisation (DSTO), Australia. It uses shared memory architecture and is used as a
back-end system to a Spare station. Shiva comprises of one Master unit and multiple
Slave units. Slave units may be of any type, viz. Intel i860 based processors or a
special purpose processor.

The Param system was designed and developed by the Centre for Development of
Advanced Computing (C-DAC), India. It is a multiprocessor system that uses
message passing as well as shared memory parallel programming. Param systems are
available in three series, viz. Param 8000, Param 8600 and Param 9000. The Param

79

www.manaraa.com

80 Implementation of the JPEG

8600 is based on Intel's i860 processor. The i860 based Param 8600 was selected for
this research.

The JPEG algorithm was implemented on the above mentioned three systems.
Section 4.2 describes the hardware architecture, operating system and implementation
of the JPEG algorithm on the Mercury system. Section 4.3 describes the hardware,
parallel programming environment and implementation of the JPEG algorithm on the
Shiva system. Section 4.4 describes the hardware architecture of Param 8600, Paras
parallel programming environment and implementation of the JPEG algorithm on the
Param system. Performance comparison of these three parallel computers is given in
section 4.5.

4.2 Implementation of the JPEG Algorithm on the Mercury
System

The JPEG algorithm was implemented on the transputer based Mercury system using
the Helios operating system.

Section 4.2.1 describes the Mercury system and its parallel programming
environment. Section 4.2.2 describes implementation of the JPEG algorithm on
Mercury system. The JPEG algorithm was implemented on various sized network
topologies and with different image sizes. Experimental results are given in section
4.2.3.

4.2.1 Mercury System Architecture

This section describes the Mercury system. Mercury system is a multi-user scalable
Multiple Instruction Multiple Data (MIMD) parallel computer, with primary
aggregate memory of 100 MByte, and twenty processors. It consists of four T800
transputers and sixteen T805 transputers.

4.2.1.1 Hardware Architecture: A 80386 based PC was used as the front-end to the
transputer based Mercury system. It consists of twenty Transputers, four of which are
T800s and sixteen transputers are T805s. Four transputers are connected in a ring
topology and named as n, T2, T3 and T4, as shown in figure 4.1. Sixteen transputers
are connected in a torus topology, and named as NI, N2, N3 ... N16.

The INMOS transputer family is a range of system components each of which
combines processing, memory and serial interconnection interfaces in a single VLSI
chip, with a design based on the Reduced Instruction Set Computer (RISe)
technology [INMOS, 89]. The first member of the family, the T414, a 32-bit
transputer, was introduced in September 1985. Transputer architecture has inherent
concurrency that can be applied to a wide variety of applications such as simulation,
robot control, image synthesis, and digital signal processing. These numerically
intensive applications can exploit large arrays of transputers in a single system. The
following series of transputers are available; T800, TS05, T9000 and Alpha. The
overall performance of a transputer based system is dependent on the number of
transputers, the speed of inter-transputer communication and the floating point

www.manaraa.com

Implementation of the JPEG 81

perfonnance of each transputer. The following section describes the characteristics of
the T805 transputer.

T80S transputer architecture: The T805 has a floating Point Unit (FPU), a CPU, 4
KBytes of local memory, four communication links and a timer as shown in figure
4.2. INMOS T805 provides a peak computing power of3.5 MFLOPS at 20 MHz. The
Transputer has an internal memory of 4KByte, which is too small to run most
applications. Thus external transputer Modules (TRAMS), which consist of 32
KBytes - 2 MBytes of memory are often used. Communication links are Direct
Memory Access (DMA) based bi-directionallinks that can be used to connect many
transputers in a multiprocessor system [Mitchell, 90]. The peak communication speed
between two T800 or T805 transputers is 20 Mbits/sec.

•....1 Tl L...
-- ." "'1 I""" ."

Front end I T2 I I T3
.a .. ~ .a

::1 T4 I~..

• • • •-. NI •: N2 •.. N3 •~ N4 ~rcury proc ss ng nodes

• • • •
Ir-+ N5 •.. N6 ~.. N7 •~ N8 ~n...

• • • •
Ir-+ N9 •.. NIO •.. NIl •~ Nl2 •n...• • • •-. N13 •.. Nl4 *.. Nl5 I-- - Nl6 •I--

• • • •

Figure 4.1 Interconnection topology of the Mercury system

www.manaraa.com

82

vee
GND
Analyse ------.

Reset

System
Services

Implementation of the JPEG

Processor

On-chip
RAM

Link
Interface

Linkln
LinkOut

Application Specific Interface

Figure 4.2 (T805) Transputer architecture

4.2.1.2 Helios Parallel Programming Environment: The Helios operating system
was used on the Mercury system. Helios is a distributed operating system developed
by Perihelion Software Limited and runs on a wide range of workstations. Helios is
capable of expanding into the available set of processors and of sharing the workload
among them. Such processor clusters may themselves be interconnected in a local
network to allow the sharing of data and expensive devices such as high capacity
discs and laser printers [Ian, 92] [Hemery, 91].

Helios provides four levels of communication between processors. The lowest
level is used by the nucleus: PutMsgO and GetMsgO are the Message Passing
Primitives (MPP) that provide the basis of all Helios communication. The level above
this is provided by the system library functions ReadO and WriteO. These calls
operate on streams and have time outs associated with each requested transaction. At
the next level is the, Portable Operating Set of Instruction Codes (POSIC), readO and
writeO functions. Calls to the POSIC functions are based on POSIC file descriptors.
The highest level of communication is at the language level, which depends upon the
programming language used.

The POSIC communication routines is used most often because of the following
factors.
I. This communication mechanism assures some degree of reliability and fault

tolerance. That is, it provides error detection and recovery from failure and there
is a guarantee that messages will arrive at their respective destinations.

2. It offers greater functionality than lower level libraries.
3. Most importantly, POSIC library can also be used on other parallel architectures,

thereby giving portable code.
MPP as well as POSIC communication routines were used to compare their effect

on the execution times. In these two levels of communication, inter-processor

www.manaraa.com

Implementation of the JPEG 83

message transmission times over transputer links are characterised by a relationship of
the form:

Ttotal toverhead + tinit + N.ttx
126.120129 + 0.562684.N for MPP
1461.421142 + 0.567642.N for POSIC

where,
Ttotal message transmission time,

toverhead loop overhead on each test iteration,

!mit message initialisation time,

N number of bytes in a message,
ttx transmission time for one byte.

Some of the most useful facilities in the POSIC communication protocols are:
• openO is used to open a stream to a named file or server and it returns the file

descriptor that can be used by other routines.
• linkO is used to create a symbolic link, in other words an entry in the naming tree

that actually refers to some other object elsewhere in the naming tree.
• closeO terminates a stream connection to a file or server that was produced by

openO·
• readO attempts to obtain data from an open file or server. The read statement is

written as:
read(file descriptor, address of the buffer, length of the buffer).

• writeO attempts to send data to an open file or server. The write statement is
written as:
write(file descriptor, address of the buffer, length ofthe buffer).

4.2.1.3 Component Distribution Language (CDL): CDL is the language that
facilitates parallel programming under Helios. The purpose of CDL is to provide a
high level approach to parallel programming. It allows Helios to take care of the
actual distribution of the program components over the available physical resources.

An example of CDL script is shown below. In CDL script the sentence followed
by # is a comment. The script consists of two parts, viz. component declaration(s) and
task force defInition.

The purpose of the component declaration is to specify relevant details of the
hardware component to the Helios operating system. The task force defInition is a
specifIcation of the network topology, and is used by the Helios operating system.

This is a CDL script example
component master {memory 20000; puid /Clusterffl; }
master Islave1 <> slave2

Comment
Component declaration
Task force defmition

The component declaration part describes the requirements of particular
components in the task force. A component can be declared in terms of memory size,
path of the processor location, and name of the processor, as shown in the above
example.

www.manaraa.com

84 Implementation of the JPEG

The task force defmition part describes the interaction of the task force with the
components. The CDL language defmes four parallel constructors, i.e. I pipeline
constructor, <> bi-directional constructor, /\A parallel constructor, and III interleave
constructor.

4.2.1.4 Parallel Programming Languages: Transputer based systems support
OCCAM, C, and C++ progranuning languages [Ungerer, 91]. The transputer was
designed to execute the OCCA\1 parallel progranuning model efficiently. OCCAM
programs can be operated on four independent channels in parallel [Pountain, 87].

4.2.2 Implementation of the JPEG Algorithm on the Mercury System

The JPEG algoritlun was implemented on the Mercury system using the C
progranuning language under the Helios operating system. It was implemented on
various number of processors on Mesh topology distributed memory architecture
using the Plan,

Mercury Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP)

where,
P is Plan for implementation,
NBCT is the Non-Block Comparator Technique used for image processing,
NIPC is Block Dependency with Non-Inter-Processor Communication,
BBIP is Block Based Image Partitioning method,
DMA is Distributed Memory Architecture,
DToT is Distributed Memory Architecture with Torus Topology,
NP is Number ofProcessors = 112131519113117.
Image Size = 125 x 1251228 x 2311625 x 423.

This Plan was implemented on the Mercury system with NP = 1,2,3,5,9, and 17
for three different three image sizes. Thus a total of eighteen (6 x 3) Plans were
implemented. This section explains the implementation procedure of parallel JPEG
implementation on the Mercury system.

The implementation procedure used on the Mercury system is shown in figure 4.3
as a flow diagram [Sharda, 93]. The source image is initially stored on the host
processor Tl. The Image is transferred to the T4 node processor through the T3 node
processor. The node processors (Nl to N16) wait for components of the source image
to be down loaded. The T4 processor partitions the image into two parts and sends
each part along with the required header information to node processors NI and N4.
For image partitioning a block of 8x8 samples is used as an atomic component. The
NI node processor further divides the image into eight parts and sends seven of these
parts to node processors N13, N5 and N2. One sixteenth of the image is retained on
the NI node processor. This distribution of image parts continues as shown in the path
graph given in figure 4.4. Thus, each node processor has 1/16th of full image. The
Image distribution is followed by performing encoding on each processor in parallel.
The encoded image is composed using a reverse procedure with respect to the
procedure used for image distribution.

www.manaraa.com

Implementation of the JPEG 85

The above described procedure was used for distributing the image onto seventeen
processors. Experiments were carried out to determine the execution time on fewer
processors as well. For each experiment the image was distributed as evenly as
possible on the set ofprocessors being used.

START

T1 prO(ssor

Nt processor "
N4 processor

Transfer image

Receive image
toT4

I-- r--I
Reveive image

from master

~
from master

+ Divide image +
Divide image into 2parts Divide image

into 8 parts into 8 parts N

13

~ • ~l '--
Transfer image

Transfer image -. to NI& N2 N3.
Transfer image

- to N13, N5, N2 to N16, N8, N3

r1~• .., N

N2 Initialise JPEG Compress 1/16 8
Compress 1/16 o/pfile image

image •"Receive
Receive Receive

compressed
compressed compressed

image from r-~ imgage from IlIl image from
N13, N5,N2

NI, N2 N16, N8,N3• +Transfer
compressed 1/2 - Transfer
image to master Store '--- compressed 1/2

compressed image to master
image on Host

N

Figure 4.3 Flow diagram of implementation procedure on the Mercury system

www.manaraa.com

86 Implementation of the JPEG

NIO Nil

~
ri~

T t 1
NI5 NI2 N7

~
N6N9

~-----1•• T4

ri'~
NI3 N5 N2

~ ~ ~
NI4

t
Figure 4.4 Path graph for distribution and composition of image parts

4.2.3 Experimental Results

The JPEG algorithm was implemented on the Mercury system for different numbers
of processors, such as 1,2,3,5,9, 13, and 17. Experimentation was done for output
quality as 75%. Different level of communication primitives (MPP and POSIC) were
used for each of the three image sizes investigated. The results obtained from these
experiments are given in tables 4.1 and 4.2.

The minimum execution time obtained with POSIC communication routines for a
125x125 is 0.89 seconds, for a 228x231 image size it is 2.88 seconds, for a 625x423
image size it is 10.64 seconds on a system with nine node processors.

Table 4.1 Execution times obtained with POSIC communication routines

Number of Execution time in seconds
Processors For 125x125 For 228x231 For 625x423

-NP ima2e ima2e ima2e
1 4.35 14.14 55.86
2 2.27 7.33 28.65
3 1.53 4.89 19.13
5 0.97 3.13 12.17
9 0.89 2.88 10.64
13 1.19 3.52 12.96
17 2.26 6.73 19.33

www.manaraa.com

Implementation of the JPEG

Table 4.2 Execution times obtained with MPP communication routines

Number of Execution time in seconds
Processors For 125x125 For 228x231 For 625x423

-NP imae:e imae:e imaEe
1 4.35 14.14 55.86
2 2.25 7.25 28.35
3 1.51 4.86 18.87
5 0.94 3.04 11.86
9 0.69 2.09 7.66
13 0.83 2.38 8.85
17 1.22 2.97 10.27

4.3 Implementation of the JPEG Algorithm on the Shiva
System

87

Around 1990, the Defence Science and Technology Organisation (DSTO), Australia
undertook a research project on a heterogeneous, parallel multiprocessor named as the
Shiva1 system [Yakovleff, 91]. The aim of the project was to enhance overall
performance by incorporating several data paths in the architecture in order to achieve
efficient and balanced processor utilisation. It incorporated performance enhancing
techniques, such as multiplicity, heterogeneity, and reconfigurability.

4.3.1 Shiva System Architecture

Shiva is a heterogeneous, shared memory, multiprocessor parallel architecture. It is
designed to exploit the I/O and operating system features of existing computers. It is
intended to supply its parent system wIth enhanced performance over a wide range of
applications without the need of any special parallel progranuning on the part of the
user [Anderson, 90]. It can act as a Multiple Instruction Multiple Data (MIMD)
computer, or as a pseudo Single Instruction Multiple Data (SIMD) computer.

4.3.1.1 Hardware Architecture: The Shiva system has eighteen processor units. The
processor unit has Intel i80860 processor. The first processor unit is called the Master
unit and the others are called the Slave units. Each processor unit has its own
processing element (PE) and 16 MBytes of local memory [Karnak, 92a]. Local
memory can be accessed either directly by the resident processor via a hotline or
through a bus to which each processor has access as shown in figure 4.5. The Master
unit contains the following elements:
• Co-ordinator,
• Memory unit,
• SBus interface,
• Subsystems such as Bootstrap EPROM, real-time clock, serial interface, registers,
• Bus arbitor.

IShiva is the Hindu God ofcreation.

www.manaraa.com

88 Implementation of the JPEG

The control signals to and from the i860 are handled by a co-ordinator which
includes address/parameter FIFOs to make use of the processor's pipelining
capabilities. The co-ordinator maps requests from the i860 to the various devices
(local memory, SBus or subsystem) or to the arbitrator if any of the other memory
units is to be accessed.

The Slave units contain devices, such as co-ordinator, memory unit, data pipeline.
All Slave units need not be of the same type, implying the possibility of a
heterogenous architecture as shown in figure 4.6. Slaves may be special purpose
boards such as a Neural Accelerator Board (NAB) and Parallel Transformation board
(ParaT) and Intel i860 based processors [Anderson, 92] [Nelson, 92b]. NAB is used
for graphical simulation in real-time [Nelson, 93b]. ParaT system is used for
performing stereoscopic terrain visualisation application [Yakovleff, 94] [Nelson,
92b].

Pipeline COIUlection

,
: Memory :
, Unit ', '
~------'

Slave 3
i - - - -.

, i860 ', ,

Slave 2

,
: Memory :
, Unit ', '

, ,
, i860 ', ,

,
'Memory ,
: Unit :, '
~------'

Slave I

~ - - - -
: i860 :

,
'I-IM-", FIFO!-,+--H....~

Master

Figure 4.5 Master and Slave units and data paths

Intel i80860 architecture: The Intel i860 was designed for numerical and vector
intensive applications [Margulis, 90]. Many of the design principles used have been
adopted from supercomputer technology enabling the i860 to deliver a peak arithmetic
performance of 80 MFLOPS (single precision) and 60 MFLOPS (double precision) in
conjunction with a peak integer performance of 40 MIPS. In particular, its high
throughput is achieved from a combination of RISC design techniques, pipelined
processing units, wide data paths, and large on-chip caches. On a single chip, the
architecture supports the following facilities, as shown in figure 4.7:
• Integer operations,
• Floating point operations,
• Graphical operations,
• Memory-Management support,
• Data Cache and Instruction Cache.

www.manaraa.com

Implementation of the JPEG 89

Pioeline
ParaTor

: Mem~r-:
:_ ~ U~i! _:

••
••

Soare Station

Non i860 Slave
Unit

Figure 4.6 Shiva system with ParaT or NAB Slave units

Data
Instruction Addr ... Data Cache

Cache

Instr Addr ++ •FP Instr + •
Integer Unit

Floating Point
Unit

\
Is • • ~.

L, I ~ 64 Bit Address Path

I~. I yJ

Adder Unit
Multiplier

Graphics Unit Unit

De
Src

Src

Figure 4.7 Intel i860 processor architecture

www.manaraa.com

90 Implementation of the JPEG

The i860 microprocessor has a number of instructions designed to perform
operations specific to graphics, such as scan-line rendering, Z-buffering and 4x4
transforms used for perspective projections [Intel, 90]. In addition these instructions
make use of the 64-bit wide data path to perform operations on several pixels
simultaneously, depending on the size of their representation. This makes the Shiva
system suitable for image compression applications.

4.3.1.2 Communication Links: The host and the master units are interfaced via an
RS232 and an SBus interface as shown in figure 4.8. The RS232 is a serial interface
on the master unit based on the Intel M82510 Asynchronous Serial Controller. It is
used to provide a console port to the Shiva via which the operator can control and
monitor system operation. Transfers of program binaries and large data blocks is done
through the higher bandwidth SBus interface [Karnak, 92b]. The SBus card is located
in the Sparc station. The data path is 32-bits wide [Sun, 90]. Several types of transfers
can be carried out over the SBus, from single Byte to 64-Byte block transfers.

Master processor unit

Host machine

(SUN sparc

Station)

ipeline connection

ena connectIon

Figure 4.8 Shiva system organisation

Communication is often the limiting factor in achieving high performance and
processor efficiency on processor networks. Often, the rate of computation is
significantly higher than that of communication. Communication is consequently a
potential performance bottle-neck. It is therefore important that the overhead imposed
by an operating system on communications performance be kept to a minimum.

On the Shiva system the peak shared memory access speed is 80 MBytes/sec.
However, this figure is not so critical as the i860 contains instruction and data caches.
The present version of Shiva compiler uses the simplest protocol (4-byte read and
write operations only) which can achieve roughly a contention free 5 MBytes/sec
transfer rate over the SBus. Table 4.3 shows the data transmission times (ltotal) and

the rates with respect to message sizes (N) [Bevinakoppa, 94b], where,

www.manaraa.com

Implementation of the JPEG 91

N = Message size (bytes)
Ttotal = transmission time (microseconds)

R = Rate of transmission (KBytes/sec)
The rate of transmission with respect to the message size is plotted in a graph

shown in figure 4.9. From this graph, it can be seen that transmission of a short
message is inefficient. It is more efficient to transmit a single large message than a
number of small ones. Transmission rate can be increased by implementing the burst

1de transfer.

Table 4.3 Total time (Ttotal) and transmission rate (R) on the SBus interface for

various message sizes

N (bytes) Ttotal (microsec) R (KBytes/sec)

1 1.886 530
4 4.78 836
16 12.4 1287
64 32.4 1970

256 96.6 2648
1024 296 3450
4096 947.76 4322
16384 3373 4856
65535 13133 4990

4096 16384 6553564 256 1024

Number of Bytes

164

5000 ~--------------------:::=-.,

4500

¥4000
1 3500

~3000

~ 2500
c
.22000.;
E 1500..c
~ 1000

500

0+---1----+---+---+----1---+----11-----1
1

Figure 4.9 Rates of data transfer with respect to message size

One of the more novel aspects of the Shiva architecture is the inter-slave data
pipeline. The pipeline and the shared bus, provide two mechanisms for inter-processor
communication. Unlike the bus, the data pipeline is contention free. That is, all of the

www.manaraa.com

92 Implementation of the JPEG

shiva start:
writeO:
readO:
shiva write:
shiva read:

Slave units can write to their data pipeline simultaneously. The pipeline is 64-bits
wide and can support a write (and a read) every 4 clock cycles. This implies a peak
bandwidth of 80MBytes/sec., which is the same as the peak memory and bus
bandwidth. There are two modes of access for the pipeline: blocking and non­
blocking. With a blocking access the requesting processor will be suspended if it
attempts to read from an empty FIFO buffer or write to a full FIFO buffer. A non­
blocking access will not suspend on a read from an empty buffer or a write to a full
buffer. An attempt to write to a full buffer will result in the write data being lost and
an attempt to read from an empty buffer will result in undefmed data being returned.
It is upto the controlling software to determine when it is appropriate to perform
blocking or non-blocking pipeline operations.

4.3.1.3 Shiva Programming Environment: Most of the users are not interested in
having to examine and modify their programs to take advantage of architectural
features. Rather, users would prefer that the compiler and system software make the
best use of machine's features. DSTO developed a pre-processor named Shiva
compiler which can manipulate programs, so that parallelism may be extracted and
control statements inserted to take advantage of Shiva's parallel processing features
[Maurer, 88] [Nelson, 93a].

Programs on the Shiva system were divided into host files and Shiva files. Host
files were compiled using a GNU C Compiler, that includes communication routines
[Burns, 89]. Some of the communication routines are:

shiva_open: which opens the connection between host and Shiva system ie.
initialises SBus card and serial cable.
initialises the Master and Slave processors.
send the data through the serial cable.
receive the data through the serial cable.
send a file through the SBus card.
receive a file through the SBus card.

Shiva files ware divided into master and slave files, e.g. master.c, slave I.c,
slave2.c etc. These files were cross-compiled on the host using the Shiva compiler and
downloaded to the Master processor using a shiva.out program. It has many
functionalities such as communication routines, shared and local variable declarations,
header files. Some of the communication routines available in the Shiva compiler are:

ser_getsO: get the data serially through the serial cable.
ser""putcO: put a character through the serial cable.
sbus_readO: receive a file through the SBus card
sbus_writeO: send a file through the SBus card.
sem_sendO: send semaphore to the Slaves.
sem_waitO: wait for the semaphores from the Slaves.

4.3.2 Implementation of the JPEG Algorithm on the Shiva System

Depending on the application, the programming structure can operate as a pure
message-passing system with distributed memory, or a hybrid system comprising
distributed clusters ofprocessors with shared memory [Yakovleff,91]. A Shiva system

www.manaraa.com

Implementation of the JPEG 93

based on three processors was used for experimentation. The JPEG algorithm was
implemented on the global-plus-local memory architecture machine using the
following Shiva Plans,

Shiva Plans := P(NBCT, NIPC, BBIP, SMA, SLgM, NP)

where,
P is Plan for implementation,
NBCT is the Non-Block Comparator Technique used for image processing,
NlPC is Block Dependency with Non-Inter-Processor Communication,
BBIP is Block Based Image Partitioning method,
SMA is Shared Memory Architecture,
SLgM is Shared Memory Architecture with Local-plus-global Memory

topology,
NP is Number of Processors = 11213,
Image Size = 125 x 1251228 x 2311625 x 423.

This section explains the implementation procedure of parallel JPEG
implementation on the Shiva system.

The implementation procedure used on the Shiva system is shown in figure 4.10 as
a flow diagram. In this flow diagram light boxes representing tasks are shown within
dark boxes representing processors on which the tasks are executed. After
initialisation, the Master processor waits for the source image to be sent by the front
end. When the Master receives the image data from the host it sends a start signal to
the Slaves indicating that the image is ready for compression. The Master and the
Slaves processors start OCT, quantisation and encoding (compression) steps and store
the compressed data in shared memory. The Master processor waits for the Slaves to
finish compression, then it sends compressed image data to the host machine through
the SBus. The host combines the data received from all processors and stores into the
JPEG output file.

www.manaraa.com

94 Implementation of the JPEG

SHIVA MASTER
START

...I Iarcstation T Initialise Shiva
S • •Transfer image to

l- I Receive image from host Imaster processor •• I ISend start signal to slaves
Initialise JPEG output

file •
I Compression on partl image I•

Receive compressed
"'f-- •image data from master H IWait for slaves to finish

I•
~ Send compressed image I

SLAVE-!
SLAVE-2

Wait for start signal , Wait for start signal

from master from master

• •
Compression on part2 Compression on part3

image image

+•Send finish signal to Send finish signal to -
master master

Sunsp
HO

Figure 4.10 Implementation procedure of the JPEG algorithm on the three processor
Shiva system

www.manaraa.com

Implementation of the JPEG

4.3.3 Experimental Results

95

The JPEG algorithm was implemented on the Shiva system on three processors for
different image sizes and the results obtained on these are given in table 4.4. The
results for four to seventeen processors were estimated by using the Gantt chart
[Lewis, 92]. The procedure used for estimating the execution time obtained on three
processors is as follows [Bevinakoppa, 94a].

Master Processor

CT!. 0.02
PT!, 1.07

1-__.....jCT2.0.02

Slave -1 Slave - 2

CT3,0.009
PH, om

Master Processor

IF--_..J CT4.0.009

Figure 4.11 Task graph for three processors

The task graph for three processors is shown in figure 4.11. The JPEG algorithm is
divided into four tasks as shown in the task graph of figure 4.11. In this task graph
each processor represents a processing task. Inside each processor a task is
represented as the ordered pair PTn, t(PTn) where PTn is the processing task number
and t(PTn) is the processing time of that task. Arcs joining the processors represent
conununication tasks. A conununication task is represented by the ordered pair CTn,
t(CTn) where CTn is the conununication task number and t(CTn) is its
conununication time. All times are in seconds (sec.). The processor on which a task is
executed is specified adjacent to the task processor in the task graph. The values given
below were obtained by using experimental results obtained on single i860 processor.

In this example 228 x 231 image was taken. Functions performed by the
processing and conununication tasks are as follows:

www.manaraa.com

96 Implementation of the JPEG

0.009

0.02

0.02

0.98

0.02

Execut
ion time
in sec.

1.07

Function

PT4

PT2&3

CT3&4

CT2

CTl

PTl Source image is divided on Master processor into
three parts. Each part of the image contains 228 x 77 x 3
samples. First part of the image is transferred from the
Master processor to Slave-l processor. The Master
processor performs DCT, quantisation and encoding
steps on third part of the source image.

Communication time for transferring 228 x 77 x 3
samples from the Master processor to the Slave-l
processor.

Communication time for transferring 228 x 77 x 3
samples from the Master processor to the Slave-2
processor.

DCT, quantisation and encoding steps of JPEG
algorithm are carried out on the Slave processors.

After performing each task on image parts, encoded
image is transferred back to the Master processor.
Communication time taken to transfer encoded samples
from the Slave processor to the Master processor.

The Master processor collects encoded samples from
Slave-l and Slave-2 processors and transfers it into an
output JPEG file with appropriate header/marker.

The execution schedule of the JPEG algorithm on three processors is shown in the
form of Gantt chart in figure 4.12. A Gantt chart essentially shows the scheduling of
various tasks on the time axis.

~ Computation time

D Communication time

TASKS

PT4

Cf4

Cf3
PT3

PT2

PTI

en
Cfl

0.25 0.50 0.75 1.00 1.25

Time taken for tbe task iD seconds

Figure 4.12 Gantt chart of JPEG algorithm on a three transputer network

From figure 4.12 it can be seen that the total time taken by the three Nodes
T3 t(CT1) + t(CT2) + t(PTl) + t(CT3) + t(CT4) + t(PT4)

0.02 + 0.02 + 1.07 + 0.009 + 0.009 + 0.02
1.148 == 1.15 sec.

www.manaraa.com

Implementation of the JPEG 97

The estimated execution time on a three node processors is nearly equal to 1.15
sec. which is the same as the execution time obtained from the actual implementation.
The execution times for four to seventeen processors were estimated from the
computation time and communication time obtained on a single node processor.
These results are tabulated in table 4.4.

The minimum execution times obtained for a 125xl25 image size is 0.12 seconds,
on a system with thirteen node processors. Whereas, for 228x23I and 625x423 image
sizes are 0.53 seconds and 1.32 seconds respectively, on a system with nine node
processors.

Table 4.4 Execution times of the JPEG algorithm on the Shiva system

Number of Execution times in seconds
Processors For 125x125 For 228x231 For 625x423

-NP ima2e ima2'e ima2e
I 0.6 2.63 7.02
2 0.32 1.34 3.55
3 0.28 1.15 2.41
5 0.15 0.60 1.52
7 0.13 0.55 1.39
9 0.13 0.53 1.32
13 0.12 0.60 1.60
17 0.20 0.91 2.58

4.4 Implementation of the JPEG Algorithm on the Param
System

The Param2 system is a distributed memory, message passing parallel computer
developed by the Centre for Development of Advanced Computing (C-DAC), India
[Bhatkar, 91], [Tulshibagwale, 94]. Param works as a back-end compute engine to
hosts such as PCs, SUN workstations, MicroVAX machines and U6000 Unix
machines. The Param architecture can accommodate heterogeneous nodes such as
disk I/O nodes, graphics nodes, transputer nodes, vector nodes based on the Intel i860,
and DSP nodes based on the Zoran 34325. Param is available in three series of
configurations. The Param 8000 series is a replicate scalar processor machine based
on the T805 transputer, which can be configured with 16, 32, 64, 128 or 256 nodes,
and if required with more than 1024 nodes. The Param 8600 series is equipped with
vector processing capabilities and is based on the Intel i860 processor. The Param
9000 is based on the SPARC II processing nodes. Since most of the digital image
compression techniques are DCT based, the i860 based Param 8600 was chosen for
this study.

Section 4.4.1 describes the Param system architecture. The JPEG algorithm
was implemented on the Param system using the Paras parallel programming
environment. Section 4.4.2 describes the implementation procedure employed on the

2 Param is an acronym for PARAllel Machine, and in Sanskrit it means Supreme.

www.manaraa.com

98 Implementation of the JPEG

Param system. Experimental results were obtained on a three node Param system.
Section 6.4 gives the results obtained for different image sizes on various sized
networks.

4.4. 1 Param System Architecture

This section describes the Param 8600 system architecture. Param is a multi-user
scalable Multiple Instruction Multiple Data (MIMD) parallel computer capable of
exceeding 1 Gflops of peak performance, with primary aggregate memory of 1 GByte
and auxiliary storage of 20 GByte on a system with sixteen node processors [Eknath,
91]. Intel's i860 provides a peak computing power of 80 MFLOPS, but sustained
computing power is less than 5MFLOPS [Murthy, 91].

4.4.1.1 Param 8600 Hardware Architecture: Each node of the Param 8600
comprises one i860 processor and four transputers. Sixteen such nodes are
interconnected to form one cluster of the Param system as shown in figure 4.13.
Param nodes in a cluster are connected through 96 x 96 cross point switches. Four
such Param clusters can be connected through 64 x 64 way cross point switches.
Therefore, a fully configured Param system can have as many as 64 nodes.

Figure 4.14 shows the architecture of a Param system node. In Param 8600, each
node is equipped with four transputers T805, one i860, and a local memory. Serial
communication links between two processors are called CSP (Communication
Sequential Processor) channels [Ram, 91]. The communication speed of each CSP
channel is 60 MBytes/sec. An important feature of this architecture is its very low
interprocessor communication overhead. Another communication path between the
four transputers and the i860 co-processors is the 32-bit high speed bus shown in
figure 4.14. A shared bus can reduce the effective data transfer bandwidth and
eventually the system performance. To avoid this bus bottleneck, C-DAC has
developed an alternative scheme for data transfer. The Intel i860 co-processor and the
transputers have independent memories and data is exchanged between these through
the CSP channels. The i860 is treated as a computational resource for the four
transputers. These four transputers can also participate in computation, but are used
primarily as communication engines.

www.manaraa.com

Implementation of the JPEG

Figure 4.13a Param cluster architecture

Front-end P

99

www.manaraa.com

100

Hom g g
g.- g ..

10
Param Cluster

Figure 4.13b Fully configured Param system

Implementation of the JPEG

DDDDD

DDDDD

DDDDD

DDDDD

Figure 4.13 Param system architecture

Each processor node is configured with an i860 processor, an i960CA superscalar
processor, 4 - 16 MBytes of main memory, an I/O node and a Multibus II interface as
shown in figure 4.15.

Apart from the local storage memory, Param is equipped with a Mass Storage
System (MSS). A Disk cluster is the basic mass storage unit in the Param system. The
MSS [Eknath, 91] provides high I/O bandwidth and large secondary storage capacity.
The MSS consists of an array of disk drives and a number of I/O nodes with SCSI
interfaces to these drives. Up to four high capacity disks are attached to each I/O
node. In addition, one tape cartridge unit is provided per I/O node.

www.manaraa.com

Implementation of the JPEG 101

4.4.1.2 The Paras Parallel Programming Environment: Paras is a comprehensive
parallel programming environment that was developed for the Param system, and
similar class of message passing parallel computers. It provides a range of services to
enable application software developers to utilise the hardware in a straight forward
and easy to use manner. Its main components are:
• Development tools, such as compilers (for C and Fortran), linkers, debugger,

librarian. It provides a rich and powerful runtime environment to the executing
programs [Geetha, 91].

• Library environments such as, PARUL (PARallel User Library), for distributed
memory multiprocessor systems [Kumar, 92], imagePRO for image processing
[Udpikar, 91].

• Application kemels such as MTK/860 [Rao, 91]. These kemels support page-level
protection, and provide call interface to user applications for performing various
operations such as create, terminate, suspend, and resume.

• Interprocessor communication software PRESHAK relieves the application
developers from designing and developing the communication layer for their
parallel algorithms [Srivastava, 91].

• Routines for creating and managing a distributed file system.

Paras includes a configuration language which is written in the C programming
language. Configuration files are named with the extension .cfs. A configuration file
has three parts: hardware specification, task specification, placement of tasks on the
declared processors and connectivity of the processors [Rashinker, 91]. Hardware is
defmed in terms of processor name and its memory. A task is specified in terms of
stacksize and heapsize required for the application to run on the processor.
Connectivity is specified through the links on a processor. Some of the most useful
routines in the Paras programming environment are:

index--.port_locateO: locate the port address to send the data.
index--.port_createO: create port address to receive the data.
sync_sendO: transfer the data synchronously.
block_receiveO: receive the data in chunks of blocks.
get_nodeidO: get the node processor identification number.
sem_waitO: wait for the semaphore status.

www.manaraa.com

102 Implementation of the JPEG

Figure 4.14 Architecture of a Param 8600 node

Figure 4.15 i860 node architecture

www.manaraa.com

Implementation of the JPEG

4.4.2 Implementation of the JPEG Algorithm on the Param System

103

The JPEG algorithm was implemented on a three node Param system [Bevinakoppa,
95]. Plans used on this architecture was represented by,

Param Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP)

where,
NP=11213,
Image Size = 125 x 1251228 x 2311625 x 423.

This section explains the implementation procedure and the program structure
employed in implementing the JPEG algorithm on the Param system.

A Personal Computer (PC) with a transputer was used as the front-end to the
Param system. A single transputer plugged into the front-end PC served as the host
processor for the processing nodes on the i860 based back-end Param system. Three
nodes on a single cluster were connected in a tree topology, as shown in figure 4.16.
The implementation procedure used on the three node Param system is shown in
figure 4.17 as a flow diagram. In this figure, the transputer on the PC is taken as the
host processor and Nl, N2 processors as the processing nodes.

The source image is initially stored on the host processor. Node processors wait for
components of the source image to be down loaded. The host processor partitions the
image into two parts and sends each part along with the required header information
to node processors Nl and N2. For image partitioning a block of 8x8 samples is used
as an atomic component. One third of the image is retained on the host node
processor.

The distribution of image parts is shown in figure 4.18 in the form of a path graph.
Image compression is performed on each processor in parallel. The encoded image is
composed using a reverse procedure with respect to the procedure used for image
distribution.

s-
Host

Front end

NI

Figure 4.16 Three nodes connection in Tree topology

N2

www.manaraa.com

104 Implementation of the JPEG

START

Host Proc~sor
.".

Divide image into 3
parts

Nt node processor • N2 node processor

Receive image from
~

Trasfer image to
f-~

Reveive image from
master NI&N2 master

~ ~ ~
Compress II3 image Initialise JPEG olp

file and compress Compress II3 image

1
1/3 image• +

Transfer compressed 4 Receive compressed
iolI- Transfer compressed

image to master imgage from NI, N2 I-
image to master

~
Store compressed

image in output file

Figure 4.17 Flow diagram of implementation procedure on the Param system

Figure 4.18 Path graph for distribution and composition of image parts

www.manaraa.com

Implementation of the JPEG

4.4.3 Experimental Results

105

Table 4.5 tabulates the time taken for compressing eight-bit resolution images of
different sizes on the Param system for different number of node processors.
Execution times on a system with one to three nodes were obtained by actual
implementation, whereas execution times on four to sixteen processors were
calculated with the help of Gantt charts by using execution and communication times
obtained on the system with three processors.

The minimum execution times obtained for 125x125 and 228x231 image sizes are
0.038 seconds and 0.073 seconds respectively, on a system with nine node processors.
Whereas, for a 625x423 image size the minimum execution time obtained is 0.327
seconds on a thirteen node Param system.

Table 4.5 Execution times of the JPEG algorithm on the Param system

Number of Execution time in seconds
Processors For 125x125 For 228x231 For 625x423

-NP ima2e ima2e ima2e
1 0.309 0.6 2.93
2 0.158 0.308 1.503
3 0.108 0.208 1.01
5 0.065 0.124 0.602
7 0.048 0.09 0.43
9 0.038 0.073 0.34
13 0.044 0.079 0.327
17 0.05 0.083 0.369

4.5 Performance Comparison of Parallel Computers

The performance of a parallel algorithm can be analysed in terms of speedup,
scalability, and efficiency as explained in chapter 2. Section 4.5.1 gives the speedup
and efficiency of the JPEG algorithm on the Mercury system. Section 4.5.2 gives the
speedup and efficiency obtained on the Shiva system, and section 4.5.3 gives the
speedup and efficiency for the Param system.

4.5.1 Speedup and Efficiency of the JPEG Algorithm on the Mercury System

Speedup and efficiency obtained on the Mercury system using POSIC communication
routines and MPP communication routines is given in tables 4.6 and 4.7 respectively.
Graphs of speedup and efficiency of the JPEG algorithm on the Mercury system are
shown in figure 4.19 and 4.20. Speedup and Efficiency were defmed in se~tion 3.4 as,

11 = SIN,

www.manaraa.com

106

where,
S
Tl

TN

T]

N

Implementation of the JPEG

= Speedup,
= Time taken on single processor,

= Time taken on N number of processor,

= Efficiency,
= Number of Processors.

From speedup graphs for the POSIC routines (figure 4.l9a) and MPP routines
(figure 4.20a), we can see that the scalability for all image sizes is close to 9. The
efficiency graph for POSIC (figure 4.l9b) and MPP routines (figure 4.20b) shows that
efficiency of 90% or higher was obtained for up to five processors. This implies that
even though there is increasing speedup values for upto nine processors, the marginal
cost of adding more than five processors is rather high, In other words, from cost­
benefit analysis point of view a five processor system would be most cost effective.

Table 4.6a Speedup on the Mercury system using POSIC communication routines

Number of Speedup - S
Processors For 125x125 For 228x231 For 625x423

-NP imal!e imal!e imal!e
1 1 1 1
2 1.92 1.93 1.95
3 2.84 2.89 2.92
5 4.48 4.52 4.59
7 4.89 4.91 5.25
9 3.65 4.02 4.31
13 1.92 2.1 2.89
17 0.05 0.083 0.369

Table 4.6b Efficiency on the Mercury system using POSIC communication routines

Number of Efficiencv - n
Processors For 125x125 For 228x231 For 625x423

-NP imal!e imal!e imae:e
1 1.00 1.00 1.00
2 0.96 0.97 0.98
3 0.95 0.96 0.97
5 0.90 0.90 0.92
9 0.54 0.55 0.58
13 0.28 0.31 0.33
17 0.11 0.12 0.17
17 0.05 0.083 0.369

www.manaraa.com

Implementation of the JPEG 107

6
5 CII

4 m
3 ~
2 '1J

I

1
o

13 17
5 9

Number of
Processors· NP

625 x423
228 x 231

125 x 125
Image
Size

Figure 4.19a Graph of speedup on the Mercury system using POSIC communication
routines

0.8
f... 0.6u
c..
U 0.4
5:
w

0.2

3 5 9 13 17

625x423

228x231
Image Size

125x125

Num ber of Processors·NP

Figure 4.19b Graph of efficiency on the Mercury system using POSIC comm. routines

Table 4.7a Speedup on the Mercury system using MPP communication routines

Number of Speedup - S
Processors For 125x125 For 228x231 For 625x423

-NP image image image
1 1 1 1
2 1.93 1.95 1.97
3 2.88 2.91 2.96
5 4.63 4.65 4.71
9 6.3 6.77 7.29
13 5.21 5.95 6.31
17 3.57 4.76 5.44

www.manaraa.com

108 Implementation of the JPEG

Table 4.7b Efficiency on the Mercury system using MPP communication routines

Number of Efficiencv-
ProcessorsNP 125x125ima2(228x231 ima2e 625x423 ima2e

1 1.00 1.00 1.00
2 0.97 0.98 0.99
3 0.96 0.97 0.99
5 0.93 0.93 0.94
9 0.70 0.75 0.81
13 0.40 0.46 0.49
17 0.21 0.28 0.32

I

en

8
7 en

E i
4 Q.

3 ~
2
1
o

13 17
5 9

Number of
Processors· NP

625 x 423
228 x 231

I
125 x 125

mage
Size

Figure 4.20a Graph of speedup on the Mercury using MPP communication routines

~
0.8.

>. 0.6I,)
c:
Q)

0.4U

==w 0.2 625x423

228x231
Image Size

13 17
Number of Processors-NP

Figure 4.20b Graph of efficiency on the Mercury using MPP communication routines

www.manaraa.com

Implementation of the JPEG 109

Comparison of speedup and efficiency values obtained using the POSIC and the
MPP communication routines for image size 625x423 are given in table 4.8 and the
graphs of the same are given in figure 4.21. From the speedup graph we can see that
speedup obtained using the MPP communication routines is higher than the speedup
obtained by using the POSIC communication routines. Though the scaleup obtained
in both cases is close to 9. The efficiency graph (figure 21b) we can see that higher
efficiency can be obtained using the MPP communication routines.

Table 4.8a The speedup comparison between POSIC and MPP communication
routines

Number of Speedup - S
Processors - NP ForPOSIC ForMPP

communication routines communication routines
I I 1
2 1.95 1.97
3 2.92 2.96
5 4.59 4.71
9 5.25 7.29
13 4.31 6.31
17 2.89 5.44

Table 4.8b Efficiency comparison between POSIC and MPP communication routines

Number of Efficiency - n
Processors - NP ForPOSIC ForMPP

communication routines communication routines
1 1.00 1.00
2 0.98 0.99
3 0.97 0.99
5 0.92 0.94
9 0.58 0.81
13 0.33 0.49
17 0.17 0.32

www.manaraa.com

110 Implementation of the JPEG

Number of Processors· NP

Figure 4.21a A comparison of speedup obtained on the Mercury system using the
POSIC and the MPP communication routines

1.00

0.80s=-
o
>. 0.80u
l:
GI

0.40'0
!E
w

Number of Processors-NP
17

Figure 4.21b A comparison of efficiency obtained on the Mercury system using the
POSIC and the MPP communication routines

4.5.2 Speedup and Efficiency of the JPEG Algorithm on the Shiva System

Speedup and efficiency values obtained on the Shiva system are given in tables 4.9a
and 4.9b respectively and the graphs of the same are shown in figure 4.22a and 4.22b
respectively. From the speedup graph we can see that the speedup increases as the
image size increases for number of processors S; 3. Whereas, the speedup decreases as
the image size increases for number of processors ~ 3. Because in a shared memory
architecture memory contention increases with an increase in the number of
processors. Scaleup for all image sizes is 9. From the efficiency graph we can see that

www.manaraa.com

Implementation of the JPEG 111

efficiency is higher than 50% for upto nine processors. Whereas, for upto five
processors it is higher than 80%. Once again we can conclude that a system with five
processors would be most cost effective.

Table 4.9a Speedup of the JPEG algorithm on the Shiva system

Number of Soeeduo -S
Processors For 125x125 For 228x231 For 625x423

-NP ima2e ima2e ima2e
I I I I
2 1.86 1.96 1.98
3 2.54 2.69 2.91
5 3.89 3.98 4.61
7 4.67 4.82 5.06
9 4.8 4.96 5.31
13 4.79 4.35 4.4
17 3.06 2.89 2.72

Table 4.9b Efficiency of the JPEG algorithm on the Shiva system

Number of Efficiency - 11
Processors For 125x125 For 228x231 For 625x423

-NP ima2e ima2e ima2e
I 1.00 1.00 1.00
2 0.93 0.98 0.99
3 0.85 0.90 0.97
5 0.80 0.88 0.92
7 0.67 0.69 0.72
9 0.53 0.55 0.59
13 0.37 0.33 0.34
17 0.18 0.17 0.16

www.manaraa.com

112 Implementation of the JPEG

.
en

6
5 en
4 i
3 ~
2 '0

1
a

9 13 17
5 7

Number of
Processors - NP

625 x 423
228 x 231

125 x 125
Image
Size

Figure 4.22a Graph of speedup on the Shiva System

625x423

228x231 .
125x125 Image Size

1.00

~ 0.80.
~ 0.60
c:
Cll 0.40'u:e 0.20w

0.00
1

13 17

Number of Processors-toP

Figure 4.22b Graph of efficiency on the Shiva System

4.5.3 Speedup and Efficiency of the JPEG Algorithm on the Param System

The speedup and efficiency values obtained on the Param system are given in tables
4.10a and 4.10b respectively and the graphs of the same are shown in figures 4.23a
and 4.23b respectively. Speedup depends mainly on computation time with respect to
processors and communication time between processors. Communication time can be
reduced by transferring more number of bits in a single frame, thereby reducing the
communication overhead. Therefore, as we can see in figure 4.23a, speedup increases
with increase in image size. Scalability for 125 x 125 and 228 x 243 image size is
nearly 9, where as for a 625 x 423 image it is nearly 13. From the efficiency graph

www.manaraa.com

Implementation of the JPEG 113

(figure 4.23b), we can see that the efficiency is higher than 50% for upto thirteen
processors for 125 x 125 and 228 x 243 image sizes, and for 625 x 423 image size it is
seventeen processors. Whereas, for upto nine processors it is higher than 80%. From
this we can conclude that a system with nine processors would be cost effective.

Table4.10a Speedup of the JPEG algorithm on the Param system

Number of Speedup-S
Processors For 125x125 For 228x231 For 625x423

-NP ima!e ima!e ima!e
I I I I
2 1.95 1.95 1.95
3 2.86 2.88 2.90
5 4.75 4.82 4.87
7 6.5 6.64 6.81
9 7.93 8.17 8.63
13 7.1 7.58 8.97
17 6.34 7.21 7.93

Table 4.10b Efficiency of the JPEG algorithm on the Param system

Number of Efficiency - n
Processors For 125x125 For 228x231 For 625x423

-NP ima!e ima!e ima!e
I 1.00 1.00 1.00
2 0.98 0.98 0.98
3 0.95 0.96 0.97
5 0.95 0.96 0.97
7 0.93 0.95 0.97
9 0.88 0.91 0.96
13 0.55 0.58 0.69
17 0.37 0.42 0.47

www.manaraa.com

114 Implementation of the JPEG

625 x 423
228 x231

125 x 125
Image
Size

en
'C
CD
CD
Q.
c::
'C

en

7 9 13 17

Number of
Processors - NP

Figure 4.23a Graph of speedup on the Param system

62Sx423

12:X
2
1
8
;S231 1m ag e Size

13 179

1.00

:-- 0.80

0.60

0.40

0.20

0.00 ~1-;---;;-:-~--""--"r---L
2 3 S 7

Num ber of Processors·NP

Figure 4.23b Graph of efficiency on the Param system

4.5.4 Performance Comparison

This section gives the perfonnance comparison in terms of execution time, speedup,
scaleup and efficiency.

Execution times obtained on the three parallel computers for the 625 x 423 image
size are given in table 4.11. From this table we can see that the execution time on the
Mercury system are much higher as compared to those obtained on the Shiva and the
Param systems. The execution times obtained on the Param system are the lowest.

www.manaraa.com

Implementation of the JPEG

Table 4.11 Execution times of the JPEG algorithm on the three parallel computers

Number of Execution times in Seconds
Processors For Mercury For Shiva ForParam

-NP System System System
1 55.86 7.02 2.93
2 28.65 3.54 1.503
3 19.13 2.41 1.01
5 12.17 2.98 0.60
9 10.64 2.26 0.34
13 12.96 2.96 0.327
17 19.33 2.58 0.369

115

The speedup and efficiency values obtained on the three parallel computers for the
625 x 423 image size is tabulated in tables 4.12a and 4.12b respectively and the
graphs of the same are shown in figures 4.24a and 4.24b respectively. From the
speedup graph we can see that the speedup values obtained on all three parallel
computers are very similar for NP ~ 3. The speedup for NP > 3 on the Mercury
system is lower as compared to the other two architectures. For NP = 17 the speedup
is lowest on the Shiva system. From this we can conclude that the addition of
processors lead to increased bus contention and reduction in the speedup obtained on
the Shiva system. The speedup for the Param system is higher as compared to other
architectures. Scaleup for Mercury system and for Shiva system is 9, and for the
Param system it is equal to 13.

From the efficiency graph (figure 4.24b) we can see that the efficiency is higher
than 50% for upto nine processors on Mercury and Shiva systems and on Param
system the efficiency is higher than 50% for upto thirteen processors. Whereas, for
upto five processors it is higher than 90% on Mercury and Shiva systems and for upto
nine processors the efficiency is higher than 90% on Param system. From this we can
concluded that Param system with nine processors would be most cost effective.

From speedup, efficiency and scaleup figures discussed above we can conclude
that the JPEG algorithm performs better on a hybrid memory architecture.

Table 4.12a Speedup of the JPEG algorithm on the three parallel computers

Number of Speedup - S
Processors For Mercury For Shiva ForParam

-NP System System System
1 1 1 1
2 1.95 1.98 1.95
3 2.92 2.91 2.90
5 4.59 4.61 4.87
9 5.25 5.31 8.62
13 4.31 4.4 8.96
17 2.89 2.72 7.94

www.manaraa.com

116 Implementation of the JPEG

Table 4.12b Efficiency of the JPEG algorithm on the three parallel computers

Number of Efficiency - T)

Processors For Mercury For Shiva ForParam
-NP System System System

1 1.00 1.00 1.00
2 0.98 0.99 0.98
3 0.97 0.97 0.97
5 0.92 0.92 0.97
9 0.58 0.59 0.96
13 0.33 0.34 0.69
17 0.17 0.16 0.47

.
CIl

CIl

i
Q.
c:
"0

10

8
6
4

2
o

13 17
5 9

Number of
Processors· NP

Param System
Shiva System

Mercury System

Figure 4.24a Speedup graph for three parallel computers

1.00

0.80
~.
~ 0.60
c
Q>

0.40U
Sw 0.20

3 5 7 9 13

Param System

Shiva System

Mercury System

Number of Processors-NP

Figure 4.24b Efficiency graph for three parallel computers

www.manaraa.com

Implementation of the JPEG

4.6 Summary

117

This chapter described the hardware architecture and implementation of the JPEG
algorithm on three parallel architectures. Experimental results, speedup and efficiency
graphs were given in this chapter. Speedup depends mainly on computation time on
the processors and the communication time between the processors. The
communication time can be reduced by transferring more bits in a single frame,
thereby reducing the communication overhead. Therefore, in all speedup graphs,
speedup increases with increase in image size.

On the Mercury system, a comparison of POSIC and MPP based communication
shows that the speedup and efficiency obtained with the MPP communication routines
is higher than that obtained with the POSIC communication routines. But, the POSIC
communication routines provide greater functionalities than the MPP communication
routines.

A comparison of the three architectures showed that the hybrid memory
architecture, such as the Param system, gives the best performance in terms of
speedup, scaleup and efficiency.

www.manaraa.com

5 SIMULATION OF DIGITAL IMAGE
COMPRESSION TECHNIQUES

5.1 Introduction

This chapter describes modelling and simulation methods used for simulating parallel
processing of image compression techniques using the Network u.s simulation
package.

Model building and simulation involves ten steps, viz. problem formulation, model
building, data collection, model translation, model verification, model validation,
experiment planning, experimentation, analysis of results, and documentation. Each of
these steps were described briefly in the third chapter. Image compression Plans on
different parallel computer architectures have been modelled using the Network u.s
simulation package. Details of the model building process and the process of running
simulation experiments for various Plans are given. Simulation results are compiled to
evaluate the performance of these Plans.

Speedup, scaleup and efficiency of each Plan is given, and the performance of
different Plans is compared in terms of speedup, efficiency and scaleup.

Predicting the performance of digital image compression algorithms on different
parallel architectures is a complex problem; simulation techniques can therefore assist
in the evaluation process.

To systematise the modelling and simulation work the idea of a Plan is introduced,
in section 3.3. Each Plan was translated into a model using the Network 11.5 package.
The procedure adopted for developing the models, and running the simulations is
explained in section 5.2.

Performance figures for the various Plans were obtained by running simulations on
their respective models. Performance figures are derived from the execution times
obtained from the simulation experiments. Execution times of the various models are
given in section 5.3. Performance of these models, in terms of speedup, scaleup and
efficiency is discussed in section 5.4.

119

www.manaraa.com

120

5.2 Simulation Procedure

Simulation of Digital Image Compression

This section describes the model building and simulation procedure for image
compression techniques on parallel computers using the Network 11.5 simulation
package. Procedure for model building and simulation includes problem statement,
model building, system simulation, system analysis and validation. These steps are
described in the following sections.

5.2. 1 Problem Statement

The fIrst step in building a model is to make a clear statement of the problem. In this
research the main issue is to study the various options for implementing digital image
compression techniques on parallel computers. This involves the study of digital
image compression techniques as well as parallel computer architectures. There are
various options for implementing digital image compression on parallel computers.
Each possible implementation is described as a Plan in this book.

Model building and simulation on the Network 11.5 simulation package is
described in this section by taking the Plan given in equation 5.1 as an example. In
this Plan three Processing Elements are connected in a tree topology. Thus taking,

PI = P(BCT, NIPC, BWIP, DMA, DTrT, 3) (5.1)

where,
P is the Plan for implementation,
BCT is the Block Comparator Technique used for image compression,
NIPC is Non-Inter-Processor Communication method used in conjuction
with Block Dependency,
BWIP is Balanced Workload Image Partitioning method,
DMA is Distributed Memory Architecture,
DTrT is Distributed memory architecture using Tree Topology,
NP - Number of Processors = 3.

5.2.2 Model Building

The steps involved in model building are: create network topology, defme system
operations and model verifIcation. These steps are described in the following sections.

5.2.2.1 Create Network Topology: The fIrst step in model building is to create the
network topology. In Network 11.5 the hardware model can be represented graphically
as a collection of devices such as Processing Elements (PE), Transfer Devices (TD),
and Storage Devices (SD) as explained in chapter 3.

For Plan PI given in equation 5.1, three Processing Elements (PE), one Storage
Device (SD) and three Transfer Devices (TD) are required as shown in fIgure 5.1. In
this fIgure Storage Device SD-I is connected to the Host Processor through the TD-l
Transfer Device. The Host Processor is connected to PE-l through TD-2, and to PE-2
through TD-3.

www.manaraa.com

Simulation ofDigital Image Compression

TD-2

TD-l

TD-3

121

Figure 5.1 Graphical representation of Plan P1

5.2.2.2 Define System Operation : The steps involved in defming the system
operations are:

1. Specify the characteristics of each hardware devices.
2. Defme instructions for each PE.
3. Construct the software modules.

These three steps are described in the following sections.

Specify the characteristics of hardware devices: Each hardware component is
specified by a set of parameters. The parameters selected for Processing Elements,
Transfer Devices, and Storage Devices are as follows. In this section Intel's i860
processor was used as the CPU being modelled, because the i860 based Shiva
machine was used as one of the parallel processors for implementing the JPEG
algorithm.

• PE specification: A PE is characterised by its Basic Cycle Time, Instruction
Repertoire, Message List Size, and Overheads. Three PEs are named as Host
Processor, PE-l and PE-2. Screen outputs showing the details of the Host
Processor and PE-l are shown in figure 5.5. The Basic Cycle Time for these three
PEs were specified as one micro second. The computation time for instructions
defmed for each PE are taken from the experimental results. Basic Cycle Time is
the basic time unit on which the execution time of all processing instructions of a
PE are built.

Host Processor, PE-l, PE-2:
Basic Cycle Time = 1 MIC1 (Micro Seconds)

• TD specification: IDs are the links connecting PEs and SDs to move the data
either between two PEs or between a PE and an SD. Data is moved between two

I MIC is the abbreviation used for microseconds in the NETWORK 11.5 system.

www.manaraa.com

122 Simulation ofDigital Image Compression

PEs by a message instruction and between a PE and an SD, as the result of a
read/write instruction.

TD can be specified in terms of protocol, cycle time, bits/cycle, cycle/word,
word/block etc. as shown in figure 5.6. Protocol defmes the method of resolving
contention between PEs for a single TD. Protocols are of types; First Come First
Serve (FCFS), collision, priority, token ring, crossbar etc. FCFS protocol was
used for TD-I, TD-2 and TD-3. In this protocol, requests are served in the order
in which they arrive.

Two TD types were used in this Plan. The first type of TD was used to
connect the SD to the Host Processor. The specification form for TD of the first
type is shown in figure 5.6a. TD of the second type, TD·2, was used to connect
the two PEs. TD-2 specification form is shown in figure 5.6b. Specified
parameters for these TD are as follows.

TO-I: TO between SO and Host Processor:
Protocol FCFS
Cycle time 0.5 MIC
Bits / Cycle 64
Cycle / word I
Word / block I

TO-2 and TO-3: TOs between two PEs:
Protocol FCFS
Cycle Time 1 MIC
Bits / cycle 64
Cycle / word I
Word / block I
Block overhead 0.05 MIC

• SO Specification: Storage devices contain user named files and unstructured
storage. In our case, SD-I contains two files named as Source Image File and
Compressed Image File. Read and write instructions are used to access these
files. When a read instruction references an SD, it checks for the Source Image
File to see if the requested file is available. If it is available, the file is read into
the PE.

When write instruction attempts to put a file into an SD, it checks to see if
there is enough space available. If required space is available it accepts the file. If
adequate space is not available, a warning message is issued to the user.

Files are read or written analogous to the way real storage devices work.
Storage devices automatically decompose all file reads and writes into words and
blocks. Every SD can be specified by attributes such as Name, Read access time,
Write access time, Read word overhead time, Write overhead time, bits/word,
number of ports, word / block, file list, as shown in figure 5.7. Following are the
some of the attributes used for SD-l.

www.manaraa.com

Simulation ofDigital Image Compression

SD-l:
Capacity: Total number of bits that SD can hold = 1 GBits
Bits/word = 64
Number of Ports = 1
Word / block = 1
File List = 2 (Source Image File, Compressed Image File)

123

Define instructions for each PE: The next step of model building is to defme the
instructions for each PE. The Instruction Repertoire consists of four types of
instructions. That is, processing instructions, read/write instructions, message
instructions and semaphore instructions. Instructions for a Plan are divided as
instructions on the Host Processor, and instructions on PE-l and PE-2. These
instructions are described in the following sections.

For Plan PI image size was taken as the 1100 x 900 samples, Number of Similar
Blocks (NSB) = 10%. From this data the parameters are calculated as follows.

Image Size = 1100 x 900 samples
= 1100 x 900 bits (For monochrome image @ I bit / sample)

Number of Blocks (NB) = IIRO* 9~0 = 15594

Number of Similar Blocks (NSB) = 10% ofNB = 10 % of 15594 == 1560

Instructions on the host processor are shown in figure 5.5a and are explained
below.

Host Processor Instructions:
• Start Time: This is a semaphore instruction to set the 'Start Time' semaphore.

This semaphore is used to measure the execution time for each experiment. It is
set at the beginning of the experiment and reset at the end. Thus the execution
time is simply the length of time for which this semaphore stays set.

• Receive Img from SD: This is a read instruction. This instruction reads the
source image file from the SD. Time taken to receive the image file from SD
depends on the number of bits to be received. The number of bits received from
SD for Plan PI = 1100 x 900 = 990000 bits.

• Block Comparison: This is a processing instruction where the number of cycles
were specified to process block comparison operations. Time taken for block
comparison was taken from experimental results and it depends upon the image
size. For the 125 x 125 image size time taken for Block Comparison = 7300 MIC,
for a 625 x 423 image size it is = 28000 MIC, for a 1100 x 900 image size it is
= 390000 MIC. For Plan PI the number of cycles = 390000 for the 1100 x 900
image size.

• Partition Image: This is a process instruction. Partitioning time is quite small,
about 50 MIC. The partition step partitions the image blocks into three parts.
Here the Balanced Workload Image Partitioning (BWIP) method was used. In
this step, for Plan PI, the Number of Unique Blocks was taken as 15594 - 1560 =

www.manaraa.com

124 Simulation of Digital Image Compression

14034. Therefore, all three processors get 14034/3 = 4678 blocks for processing,
assuming that all blocks are of equal intensity value.

• Send Imgpart-l to PE-l: This is a message instruction. The time taken to
transmit part of the image from the host processor to PE-l depends upon the
number of bits in image part-I. In this example NIPC method was used for Block
Dependency method. Therefore the number of bits to be transmitted to PEs
includes part of the image and the neighbouring samples. Part of the image
consists of number of blocks x number of bits in one image block. Therefore, the
number of bits transmitted = Number of Blocks x bits/ image block +
neighbouring samples = 4678 x 8 + 2200 = 37424 + 2200 = 39624 bits.

• Send Imgpart-2 to PE-2: Details of this instruction are similar to those of the
Send Imgpart-l to PE-l instruction.

• Process Image Block: This is a processing instruction. It represents the
compression operation carried out on each image block. The time taken for
processing a complete image (Tprocimg) is equal to number of blocks x time

taken for processing one block as given in the following equation as,

Tprocimg = Number of Blocks (NB) x Tprocblock
(5.2)

where, Tprocblock is the time taken for processing one image block.

The number of cycles for processing one image block is defmed as a normal
statistical distribution function (SDF). The upper limit for this normal distribution
= 425 MIC, the lower limit = 475 MIC, the Standard Deviation = 18.074, and the
Mean = 450 MIC. The parameters for this SDF were obtained from experimental.
results.

• Send Complmg to SD: This is a Write instruction. It represents the operation in
which after completion of compression process, compressed image data is sent to
the SD. The Compressed Data Structure -3 was considered to calculate the
number of bits transmitted as given in equation 5.5. Details of this equation were
explained in section 2.4.2. The defmition of which is repeated here as,

S
SBCT3 =SJHI+NL*(S +S +nl*S)+S +NUB* Blk +SEOI

SBM UBNF BNF UBM BCF

(5.3)
where,

SBCT3

SJHI

NL
nl

SSBM

SUBNF =

BCT Compressed image size for CIDS-3 in Bytes,

Size of the JPEG Header Information in Bytes =

173 bytes,
Number of Similar Block Lists in SBG = 1,
Number of Block Numbers in each Unique Block list =
1560,

Size of the Similar Block Marker = 1 byte,

Size of the Unique Block Number Field = 2 bytes,

www.manaraa.com

Simulation of Digital Image Compression 125

SUBM Size of the Unique Block Marker = 1 bytes,

NUB Number of Unique Blocks = 14034,
SBlk Size of one block in Bytes = 1,

SEOI Size of the End Of Image marker = 1 byte,

BCF Block Compression Factor = 6,
SBCT3 173 + 1 • (1 + 2 + 1560 • 2) + 1 + 14034 • 8 / 6 + 1

22011 bytes
22011 • 8 176088 bits.

• End Time: This instruction resets the 'Start Time' semaphore. Network n.5
detennines the active duration of the 'Start Time' semaphore from set and reset
condition.

Figure 5.5b shows the instruction list for PE-I. Instructions on PE-2 are the same
as the instructions on PE-l. These instructions are as follows.

PE-l and PE-2 instructions:
• Process Image Block: This is a processing instruction. The number of cycles for

this instruction is the same as for the Host Processor.
• Send CompImg to Host: This is a message instruction. It represents the

operation in which compressed image is sent to the Host Processing Element.
The number of bits specified = 4678 • 8/6 = 6238 bits.

Construct modules: Tasks to be performed by PEs are specified as modules. Module
description consists of four parts, these are: scheduling conditions, processing element
options, a list of instructions to execute and a list of modules to execute when this
module completes. A module constantly checks its preconditions to see if the user
defmed scheduling criteria are met. Once all preconditions have been met the module
takes the list of PEs on which it will run. A module begins execution by issuing
instructions from its instruction list. Once all instructions have executed successfully
it choses its successor module.

There are three modules defmed for the example Plan PI, these are Processlmg
on Host module, Processlmg on PE-1 / 2 module and Send Complmg to SO
module. These three modules are shown in figures 5.8,5.9 and 5.10 respectively.

From figure 5.8 we can see that the precondition for Processlmg on Host module
is start time = 0 MIC. Therefore, this module starts execution as soon as simulation
begins. Then it issues instructions from the instruction list, one by one. First
instruction in the list sets the Start Time semaphore. The second instruction carries
out Block Comparison. Next, the image is partitioned into three parts, and the Host
Processor sends Image Part-l to PE-l and Image Part-2 to PE-2. Then compression on
image blocks takes place. The number of blocks to be compressed is defmed by the
iteration list. In this case number of iterations were defmed for the ProcessImg Block
instruction as 4678. This means that the Process Image Block instruction executes
4678 times. (In the module form, shown in figure 5.8 and 5.9, only the first three
digits for the number of iterations can be seen.) Then this module chooses its
successor. The successor module is Send Complmg to SO module.

www.manaraa.com

126 Simulation ofDigital Image Compression

The next module to execute is Send Complmg to SO as shown in figure 5.10. In
this module the precondition is that messages CompImg Part-l and CompImg Part-2
should have been received.

When Processlmg on Host module executes, the Processlmg on PE-1 / 2
module also executes parallelly. Processlmg on PE-1 / 2 module waits for the
message Imgpart. When Processlmg on Host module sends Imgpart message, the
Processlmg 'on PE-1 / 2 module takes PE-l and PE-2 from the processor list to
execute the instructions on these PEs. The first instruction in this module is Process
ImgBlock as shown in figure 5.9. This instruction executes 4678 times because the
number of iterations were defined as 4678. Then these two PEs send their respective
CompImg Parts to the Host by executing SendCompimg Host instruction, with
CompImg Part-l and Complmg Part-2 as the message names.

As soon as the Send Complmg to SO module receives these two messages,
instructions on the Host Processor start executing. This module has anded
predecessors as Host Processor. Because Host processor has successor as Send
Compimg to SO module. The first instruction in this module is Send CompImg to
SD as shown in figure 5.10. It send the compressed image to the SD. Then it resets the
Start Time semaphore by executing the End Time instruction.

5.2.2.3 Model Verification Model verification is assisted by the module diagram
generated by Network 11.5. In this display, modules are represented in a flow chart
format as shown in figure 5.2. The name of the module is written inside the box.
Preconditions are displayed on the right upper comer of the box. The instructions for
this module are listed on the right side of the box. Output of the instructions or the
messages are indicated on the right bottom comer of the box. The successor is
indicated by a down arrow leading to the other box.

Figure 5.2 shows that the precondition for Processlmg on Host module is Start
Time = 0 MIC. This module executes on the Host Processor, indicated below the
precondition. The instruction list is given below the name of the processor. For
Processlmg on Host module the instructions are Start Time, Receive Img from
SD, Partition Image, Send ImgPart-l to PE-l, Send ImgPart-2 to PE-2, and
Process ImgBlock. The output of this module is ImgPart message and the Start Time
Semaphore being set. These are displayed in the bottom right comer of the module
box. The ADded successor module is Send Complmg to SO module.

For the Send Complmg to SO module the precondition is CompImg Part-l and
CompImg Part-2. The instructions for these modules are Send CompImg to SD and
End Time. Output of this module is to reset the Start Time semaphore.

For the Processlmg on PE-1 / 2 module the precondition is ImgPart. The
instructions are ProcessImg Block and Send Complmg to Host. The output of this
module is Complmg Part-l and Complmg Part-2.

www.manaraa.com

Simulation ofDigital Image Compression

Start TiJre: 0

Host Processor

127

Start lime
ProcessiIll! on Receive Img from SD

Hoo Partition Image
Send ImgPart-1 to PE-I
Send ImgPart-2 to PE-2
Process ImgIIock

ANDED
Predecessor

Send
Cor1lJIIll! to

SO

-.
M:I~

S+: Start TiJre
~ Corr1>IIll!

Send CompImg to SD
End lime

.M:I~

PE

ProcessiIll! on Process ImgBIock
PE Send CompImg to Host

4M: Cor1lJIIll! Part-I
M: Cor1lJIIll! Part-2

-.
R; Start TiJre

Figure 5.2 Modules diagram

5.2.3 System Simulation

After Verification, the model is subjected to a series of simulation runs. The steps
involved in system simulation are, specify the run parameters, and run simulation.
These are described in the following sections.

5.2.3.1 Specify Run Parameters: Simulation is run after specifying parameters such
as Run length, Periodic Reports, Final reports, Trace etc. Parameters are specified in
the Run Parameters form shown in figure 5.11a. These are described below:
• Run length: The run length represents the simulated time for which Network 11.5

should run the simulation. Specified here as 6 Seconds.
• Periodic reports: The number of Periodic Reports were specified as 4. This

gives four rep0l1s while the simulation is running. Required Periodic Reports are
specified in the Periodic Reports list given at the right bottom comer of the menu.
Reports for Processlmg on Host module, Processlmg on PE-1 I 2 module,
Send Complmg to SD module and TD status were specified.

• Final reports: These are the reports included in the fmal set of reports at the end
of the simulation. In these simulation the fmal reports for the Host processor and
PE-l were observed.

www.manaraa.com

128 Simulation ofDigital Image Compression

5.2.3.2 Run Simulation: A simulation experiment can be run on a model after
specifying the simulation run parameters. After running the simulation experiment
following facilities can be accessed.
• Runtime reports: This gives the utilisation graph, runtime warnings and

summary reports.
• Utilisation graph: The utilisation graph measures the percentage of time during

an interval that aPE, TD, or SD was busy. For this simulation utilisation graphs
was asked for the Host Processor and Processing Element-I. Utilisation graphs
for the Host Processor and PE-1 are shown in figure 5.11b.

• Trace reports: The runtime trace reports allow the user to monitor the progress
of the simulation experiment.

• Runtime warnings: Runtime warnings notify potential errors as these occur
during the simulation run.

• Summary reports: The summary reports contain the simulation statistics for
model entities. These statistics encompass the period of activity between the start
of the simulation and the reset time.

5.2.4 System Analysis

In Network 11.5 the operation of a model can be analysed by observing the animation
screens. During an animation, model hardware elements are highlighted as they
become active. Icons are displayed at the beginning and at the end of data
transmission, moving first from source to TD and then from TD to destination. The
procedure for creating and running animation screens is as follows.

5.2.4.1 Animation: Animation consists of three steps, namely, set animation
parameters, start the animation and observe the animation. These are described in the
following sections.

Set animation parameters: Animation parameters can be set in the animation menu
as shown in figure 5.12. This figure indicates that the animation will be done in the
single step model, animation is displayed by event, and the delay time from each
event is 1 sec, start time = 0 MIC.

Start animation: After specifying the animation parameters, animation is started by
clicking the OK button. Network 11.5 starts the animation by displaying all the
elements in gray colour initially, then a red icon starts moving through, as the
operation progresses.

Observe the animation: As the model's hardware elements become active, they are
displayed with their characteristic colour. When a module runs on a PE, the name of
the module is displayed in place of the PE name. IfPE transmits a message over a TD,
the PE is highlighted with its characteristic colour, the TD colour changes to the
source PE colour, the message is displayed near the TD and the TD connection to the
destination PE changes to the source PE's colour. Therefore, animation helps in

www.manaraa.com

Simulation of Digital Image Compression 129

visualising the operation of the model and locating any errors in the model's
operation.

5.2.4.2 Plotting: Network 11.5 simulation package provides the facility to generate
utilisation and timeline status plots for PEs, IDs, SDs, modules and semaphores.
Plotting consists of two steps: set the plot parameters, and plot the required data.

Set plot parameters: Prior to starting a plot the required parameters have to set as
shown in figure 5.13, by entering the plot type as 'Time-Line', the list of items to plot
as PEs and semaphores, and plotting Time-Span by specifying start at 0 second and
end at 2.6 seconds.

Plot: Two types of plots can be produced in Network 11.5: Time-Line status plots and
utilisation plots. These are explained in the following sections.

1. Time-line status plots: The Time-Line status plot measures each device's pattern
of activity during the competed simulation as a function of time. These plots can
be used to compare the time spent on communication and computation. Figure
5.14 shows the Time-Line status plot for modules, PEs, TDs, and Semaphore.
From this plot we can clearly see the idle time ofPE-l and PE-2 in the beginning.

2. Utilisation plots: The utilisation plot is a histogram which measures a device's
percentage utilisation during a completed simulation as a function of time. Figure
5.15 shows the utilisation of the Host Processor, PE-l, and PE-2.

5.2.5 Validation

A model can be validated by comparing the simulation results with the
implementation results. The execution times obtained from simulation experiments
and those obtained by real-time implementation are given in table 5.1. Match between
the real-time and simulation results is expressed as a Match Ratio defmed in the
following equation,

Match Ratio = Execution Time (simulation) / Execution Time (implementation) * 100.
(5.4)

Table 5.1 Comparison of execution times obtained from simulation and implementation
for Plan P1

Number of Execution Execution Match Ratio

Processors-NP Time in Sec. Time in Sec. %
(Simulation) (Implementation)

1 6.3828 6.7 95.26

2 3.315629 3.5 94.73

3 2.52244 2.71 93.08

www.manaraa.com

130 Simulation of Digital Image Compression

From table 5.1 we can see that the values obtained from simulation are within 90%
of the values obtained from experimentation. Therefore, we can say that the model for
Plan PI is a valid model. A validated model can be used for modelling Plans.

5.3 Simulation Results of Digital Image Compression
Techniques

Digital image compression techniques can be implemented on parallel computers in
many different ways. A specific way of implementation is called a 'Plan'. The specific
Plans selected for modelling and simulation are described in section 5.3.1. Simulation
results for the selected Plans are discussed in section 5.3.2. Tables giving the
execution times for the various simulated Plans are given in appendix A; table Al to
A15. Speedup values calculated from the execution time values are also given in
appendix A; tables A21 to A35. Speedup and efficiency graphs are plotted next to
each speedup table; figures Al to A15. Comparisons of the results obtained for the
different Plans are given in section 5.3.2.

5.3. 1 Plans Selected for Simulation

A Plan (Px) can be represented as a 6-tuple given in equation 5.5. Thus,

Px = P(ICT, BD, IPM, MA, MOINT, NP) (5.5)
where,
Px is Plan-x for implementation,
ICT is the Image Compression Technique used for image processing,
BD is Block Dependency method used for image processing,
IPM is Image Partitioning Method used for image processing,
MA is Memory Architecture of the parallel processor used,
MOINT is Memory Organisation / Network Topology of the parallel
processor used,

NP is Number of Processors used.

The options for each of the parameters listed above were described in section 3.3.
A cross product of all parameter options will give a very large set of Plans. In this
project a total of fifteen Plans were modelled. These Plans are divided into two set: a
set of twelve Plans for Non-Inter-Processor Communication (NIPC) method and a set
of three Plans for Inter-Processor Communication (IPC) method; as described in the
following sections.

5.3.1.1 Plans for Non-Inter-Processor Communication (NIPC) Method: The
JPEG algorithm is called as the Non-Block Comparator Technique (NBCT) and the
proposed enhancement to the JPEG algorithm is called as the Block Comparator
Technique (BCT) in this book. A total of twelve Plans were selected for modelling
and simulation of image compression for the Non-Inter-Processor Communication
method. These Plans can be classified as Plans for the Non-Block Comparator

www.manaraa.com

Simulation of Digital Image Compression 131

Technique (NBCT) and Plans for the Block Comparator Technique (BCT). These
Plans are:

Selected Plans using the Non-Block Comparator Technique;
P2 P(NBCT, NIPC, BWIP, SMA, SGM, NP),
P3 P(NBCT, NIPC, BWIP, SMA, SLgM, NP),
P4 P(NBCT, NIPC, BWIP, DMA, DTrT, NP),
P5 P(NBCT, NIPC, BWIP, DMA, DToT, NP),
P6 P(NBCT, NIPC, BWIP, DMA, DPyT, NP),
P7 P(NBCT, NIPC, BWIP, DMA, DCuT, NP),

and selected Plans using the Block Comparator Technique;
PI P(BCT, NIPC, BWIP, DMA, DTrT, NP),
P8 P(BCT, NIPC, BWIP, SMA, SGM, NP),
P9 P(BCT, NIPC, BWIP, SMA, SLgM, NP),
PIO P(BCT, NIPC, BWIP, DMA,DToT, NP),
Pll P(BCT, NIPC, BWIP, DMA, DPyT, NP),
Pl2 P(BCT, NIPC, BWIP, DMA, DCuT, NP).

In these Plans the Non-Inter-Processor Communication (NIPC) method was
selected for the Block Dependency parameter and Balanced Workload Image
Partitioning (BWIP) method for Image Partitioning Method. All of these Plans are
simulated for various number of processors.

The example Plan PI given in equation 5.1 is based on the Non-Inter-Processor
Communication method, because the neighbouring samples are transmitted along with
the main image block. This can be seen in the Send ImgPart instruction on the Host
Processor. If the Inter-Processor Communication method is used for transferring
neighbouring samples the communication time leads to increase in total execution
time compared to that for the Non-Inter-Processor Communication method.
Therefore, the Non-Inter-Processor Communication (NIPC) method was chosen.

Block Comparison using Divide and Conquer sort method was used for the Block
Comparator Technique. This method is also convenient for grouping the blocks that
have equal intensity values, for the Balanced Workload Image Partitioning (BWIP)
method. In the Balanced Workload Image Partitioning (BWIP), time for which
processors are idle can be minimised. Therefore, the Balanced Workload Image
Partitioning method was selected for the simulation.

The total number of simulation models developed for the Non-Inter-Processor
Communication method are as follows,

Total Number of Models for the NIPC Plans
Number of Models for the NBCT + Number of Models for

the BCT.

Number of Models for NBCT
Number of Models for Shared Memory Architecture +
Number ofModels for Distributed Memory Architecture

www.manaraa.com

132

where,
NMSMG

NMSMGL

NMDMTr

NMDMTo

NMDMPy

NMDMCu

Simulation of Digital Image Compression

NMSMG + NMSMGL + NMDMTr + NMDMTo +
NMDMPy + NMDMCu
_ 9 x 3 + 8 x 3 + 8 x 3 + 8 x 3 + 6 x 3 + 5 x 3 _ 134

Models,

Number of Models for Shared Memory Architecture with
Global Memory organisation,
Number of Models for Shared Memory Architecture with
Local-plus-Global Memory organisation,
Number of Models for Distributed Memory Architecture
with Tree Topology,
Number of Models for Distributed Memory Architecture
with Torus Topology,
Number of Models for Distributed Memory Architecture
with Pyramid Topology,
Number of Models for Distributed Memory Architecture
with Cube Topology.

Number of Models for the Block Comparator Technique (BCT) is almost equal to
the number of Models for the Non-Block Comparator Technique (NBCT). Therefore
nearly two hundred and sixty eight Models were simulated, and the results obtained
from these models are given in the section 5.3.2.

5.3.1.2 Plans for the Inter-Processor Communication (IPC) Method: A total of
three Plans were selected for modelling and simulation of image compression for the
Inter-Processor Communication (IPC) method. The representation of these Plans for
the Block Comparator Technique are:

Selected Plans for the Block Comparator Technique with the Inter-
Processor Communication (IPC) method;

P13 P(BCT, IPC, BWIP, SMA, SlgM, NP),
PI4 P(BCT, IPC, BWIP, DMA, DToT, NP),
PI5 P(BCT, IPC, BWIP, DMA, DPyT, NP).

For these Plans the Block Comparator Technique (BCT) was selected for Image
Compression Technique parameter. For the Inter-Processor Communication method,
Plans for Shared Memory Architecture with Global Memory organisation and
Distributed Memory Architecture with Torus and Pyramid topologies were simulated.
This helps to compare the execution times with NIPC Plans.

The total number of simulation models developed for the Inter-Processor
Communication (IPC) method are as follows:

Total Number of Models for the IPC Plans
Number of Models for Shared Memory Architecture +
Number of Models for Distributed Memory Architecture
NMSMGL + NMDMTo + NMDMPy

_ 9x3+8x3+8x3 _ 75 Models,

www.manaraa.com

Simulation of Digital Image Compression 133

where,
NMSMGL

NMDMTo

NMDMPy

Number of Models for Shared Memory Architecture with
Local-plus-Global Memory organisation,
Number of Models for Distributed Memory Architecture
with Torus Topology,
Number of Models for Distributed Memory Architecture
with Pyramid Topology.

Therefore, nearly seventy five models were simulated for the IPC Plans, and
results obtained from these models are given in the section 5.3.2.

5.3.2 Execution Times Obtained

The execution times obtained from simulation experiments are given in appendix A
Tables A.l to A.I5 show the execution times for the Plans mentioned above for
various number of processors and for three different image sizes. The image sizes
considered are 125 x 125 samples, 625 x 425 samples and 1100 x 900 samples; as
these are the most widely used image sizes in the industry. From all the tables it can
be seen that the execution time increases with the increase in image size, and the
execution time decreases with the increase in Number of Processors (NP) till some
point, then it starts increasing with NP. The point at which the least execution time is
obtained gives the scaleup for that specific Plan.

Execution times for the Non-Block Comparator (NBCT) using the Non-Inter­
Processor Communication (NIPC) method are given in tables A.l to A.6. The
execution times for the Block Comparator Technique (BCT) using the NIPC method
are given in tables A7 to A.l2. The Number of Similar Blocks (NSB) is 10% for
tables A.7 to Al2 NSB = 10%. The execution times for the Block Comparator
Technique (BCT) using Inter-Processor Communication (IPC) method are given in
tables A.13 to A.15; in these tables also the Number of Similar Blocks (NSB) is 10 %.
The least execution time in all these tables are indicated in bold letters.

Comparison of execution times obtained for the NIPC Plans is given in section
5.3.2.1. Execution time comparison for the IPC Plans is given in section 5.3.2.2.
Execution time comparison between the NIPC and the IPC Plans is given in section
5.3.2.3.

5.3.2.1 Comparison of Execution Times for the NIPC Plans: In this section a
comparison of execution times for the Non-Inter-Processor Communication (NIPC)
Plans is given. The execution times are tabulated in tables A.l to A.6. From these
tables the least execution time values obtained for the different Plans are extracted,
tabulated and compared in this section.

A comparison of execution times obtained from simulation is more meaningful
than a comparison of execution times obtained on real systems, such as the three
systems discussed in chapter 4. Because the processing power of the CPUs used on
different real systems can be quite different. Whereas, the processing power of the
different CPUs used in simulation are the same. The simulation models discussed in
this book are based on the Intel i860 cpu.

www.manaraa.com

134 Simulation of Digital Image Compression

Section 5.3.2.1a gives the execution times comparison for the NBCT Plans, and
execution times comparison for the BCT Plans is given in section 5.3.2.lb.
Comparison of these two techniques, based on the Speed Improvement Factor is given
in section 5.3.2.lc.

5.3.2.18 Comparison of Execution Times for the NBCT Plans: Table 5.2 gives the
least execution times extracted from the tables A.l to A.6, which are based on the
NBCT Plans. By comparing the least execution times obtained on Plans P2 and P3, it
can be seen that the least execution time on Shared Memory Architecture with Local­
plus-Global Memory organisation is lower.

By comparing Plans for Distributed Memory Architecture, we can see that the least
execution time for the 125 x 125 image size on Plan P5 is the lowest, and for the
other image sizes the least execution time for P6 is the lowest. Therefore, we can say
that the least execution time can be obtained for small image size on Distributed
Memory with Torus Topology and for medium and large image sizes lowest
execution time can be obtained on Distributed Memory Architecture with Pyramid
Topology.

By comparing all Plans we can see that the least execution time for the Non-Block
Comparator Technique (NBCT) can be obtained on the Shared Memory Architecture
with Local-plus-Global Memory organisation with twenty processors.

Table 5.2 Least execution times for the NBCT Plans

Plan Memory Memory Execution times in mset.

Architectur organisat NP For NP For N For
e ion I 125 x 125 625 x 429 P 1100 x

topology
image image ~OO image

P2 Shared Global 16 17.82 25 235.49 25 869.13
Memory

P3 Architecture Global & 20 10.47 20 194.96 20 732.21
Local

P4 Distributed Tree 27 15.49 27 267.72 27 981.38

P5 Memory Torus 21 11.69 21 262.58 21 959.29

P6 Architectur(Pyramid 37 13.43 37 224.55 37 812.04

P7 Cube 28 16.30 28 277.49 28 959.14

5.3.2.1b Comparison of Execution Times for the BeT Plans: Table 5.3 gives the
least execution times for all the Plans based on the BCT. By comparing the least
execution times for P8 and P9 Plans, we can see that the least execution time on the
Shared Memory Architecture with Local-plus-Global Memory organisation is lower
as compared to that on the Shared Memory Architecture with Global Memory
organisation.

www.manaraa.com

Simulation of Digital Image Compression 135

By comparing the Plans for Distributed Memory Architecture, we can see that the
least execution time for all image sizes is the lowest on Plan P11. Therefore, we can
say that the least execution time can be obtained on Distributed Memory Architecture
with Pyramid Topology.

Table 5.3 Least execution times for selected Plans using the Block Comparator
Technique

Plan Memory Memory Execution times in msec.

Architectu organisatio NP For NP For NP 1100 x
re n /topology 125 x 125 625 x 429 900 image

image image

P2 Shared Global 16 16.62 16 275.64 16 1005.1
Memory

P3 Architectu Global & 20 10.73 20 200.42 20 733.24
e Local

P4 Distributed Tree 15 15.96 15 259.58 15 1030.6

P5 Memory Torus 9 21.33 9 348.42 13 1173.7

P6 Architectu Pyramid 21 13.59 21 226.41 21 833.01

P7 e Cube 9 19.26 9 318.53 9 1165.6

By companng all Plans we can see that the least execunon t1me for the Block
Comparator Technique (BCT) can be obtained on Shared Memory Architecture with
Local-plus-Global Memory organisation.

5.3.2.1c Speed Improvement Factor: This section presents a comparison of the BCT
and the NBCT Plans based on the Speed Improvement Factor. The speed
improvement obtained by the Block Comparator Technique over the Non-Block
Comparator Technique can be represented by a factor called the Speed Improvement
Factor (SIF), defmed in chapter 2. SIF is defmed as the ratio of execution time
obtained for the Non-Block Comparator Technique (NBCT) to the execution time
obtained for the Block Comparator Technique (BCT), as given by

T
SIF = NBCT

TBCT

SIF values for Shared Memory Architecture with Global Memory organisation are
obtained by comparing the execution times obtained for Plans P2 and P8; these are
given in table 5.4, and plotted in figure 5.3 for NSB = 10%.

www.manaraa.com

136 Simulation of Digital Image Compression

Table 5.4 SIF values for the NBCT Plan P2 and the BCT Plan P8
(on a Shared Memory Architecture with Global Memory organisation)

Number of Speed Improvement Factor - SIF

Processors- For 125 x 125 For 625 x429 For 1100 x 900
NP image image image

1 1.07 1.07 1.07

3 1.03 1.07 1.17

5 1.11 1.05 1.06

7 1.06 1.00 1.06

11 1.11 1.02 1.03

16 1.07 0.97 1.01

20 0.99 0.83 0.84

1.2

1:
GI

Eu.
0.8GI-

> IIIE 0

0.6Cl."
E£_ u

0.4'C nlGlu.
GI 0.2Cl.
III

16
Number of Processors· NP

20

1100x900

625 x 429 Image Size

125 x 125

Figure 5.3 SIF graph for Plans P2 and P8

The SIF values of 1.07 obtained from simulation, for NP = 1, is close to the SIF
value of 1.08 obtained by analytical means; given in table 2.8. From table 5.4 it can be
seen that SIF value is greater than one upto some Number of Processors and then it
falls below one. The highest Number of Processors at which SIF is greater than one is
called as the Speed Improvement Cutoff Point (SICP) in this book. In appendix A
tables A.16 to A.20 give the SIF values for the various architectures. From these
tables the SICP values are extracted and tabulated in table 5.5.

www.manaraa.com

Simulation of Digital Image Compression

Table 5.5 SIF values for various Plans

137

Memory Memory Speed Improvement Cutoff Point (SICP)

Architectur organisation For 125 x For 625 x For 1000 x
e / topology 125 image 429 image 900 image

Shared Global 16 11 16
Memory

Architecture Global & 7 11 11
Local

Distributed Tree 15 15 15

Memory Torus 5 5 13

Architecture Pyramid 21 21 21

Cube 9 9 9

From the table 5.5 we can see that the highest value of SICP is obtained for the
Pyramid Topology. Of the two Shared Memory Architectures the Global Memory
organisation gives a higher value for the SICP. From the above discussion it can be
concluded that the Block Comparator Technique fails to be effective on a large
Number of Processors. The reason for this is explained below.

In this chapter the divide and conquer method was used, as outlined in the chapter
2, for comparing blocks in an image. In all of the techniques discussed in this chapter
the block comparison step takes place on the host processor and leads to sequential
processing of the block comparison process. This leads to the fact that the time taken
for the Block Comparator Technique is higher than that for the Non Block
Comparator Technique as the number of processors increases. Thus execution time
can be further reduced by parallelising the block comparison step as well [Kumar, 94]
[Zomaya, 96].

5.3.2.2 Comparison of Execution Times for the IPC Plans : The execution times
obtained for the IPC Plans P13 to P15 are given in the appendix tables A. 13 to A.15
respectively. The least execution times for the IPC Plans are given in table 5.6. By
comparing the three Inter-Processor Communication based Plans, we can observe that
the Distributed Memory Architecture with Pyramid Topology gives the least
execution time.

The execution time obtained on the Shared Memory Architecture with Local-plus­
Global Memory organisation is higher due to contention over the transfer device. In
the Distributed Memory Architecture communication takes place over the various
transfer devices in parallel. This can be seen by comparing utilisation graphs of
Transfer Devices given in figures 5.16 and 5.17.

www.manaraa.com

138 Simulation of Digital Image Compression

Table 5.6 Least execution times for the IPC Plans Plans using the Block Comparator
Technique

Plan Memory Memory Execution times in msec.

Architectur organisat NP For NP For NP For
e ion I 125 x 125 625 x 429 1100 x 900

topology
image image image

P13 Shared Global 13 20.09 13 299.42 13 1092.9
Memory & Local 5

Architecture

PI4 Distributed Torus 13 18.80 13 295.36 13 1069.1

PIS Memory Pyramid 21 12.03 21 220.21 21 830.27

Architecture

5.3.2.3 Comparison of Execution Times for Different Block Dependency Method
(NIPC and IPC): By comparing Plans for the Non-Inter-Processor Communication
(NIPC) method and the Inter-Processor Communication (IPC) method using the
Block Comparator Technique, the following conclusions are derived.

Comparing Plan P9 and P13: Execution times for Plan P13 (BCT on a Shared
Memory Architecture with Global Memory organisation for Inter Processor
Communication) are higher than that for Plan P9 (BCT on a Shared Memory
Architecture with Local-pIus-Global Memory organisation for Non-Inter Processor
Communication), because of memory contention problem on a shared bus.

Comparing Plans PI0 and P14, Plans P11 and PIS: The execution times for Plan
Pl4 (BCT on a Distributed Memory Architecture with Torus Topology for the IPC)
and PI5 (BCT for Distributed Memory Architecture with Pyramid Topology for the
IPC) are higher than those for Plans PIO (BCT on a Distributed Memory Architecture
with Torus Topology for the NIPC) and PII (BCT on a Distributed Memory
Architecture with Pyramid Topology for the NIPC) respectively for Number of

Processors ~ 5. For Number of Processors > 5 the execution times for Plans PI4 and
PI5 are lower than those for Plans PIO and PII respectively.

From this we can conclude that the IPC is efficient for lower Number of
Processors. Because the communication time for lower Number of Processors for
inter-communication among processors is less as compared to the NIPC. As the
increase in NP, the communication time taken for transferring neighbouring samples
among processors at run time increases. This leads to increase in execution time.

www.manaraa.com

Simulation ofDigital Image Compression 139

5.3.2.4 Comparison of Execution Times for Plan P11 with Different NSB : In the
BCT Plans discussed in section 5.3.2.1, the Number of Similar Blocks (NSB) in an
image was taken as 10%. From the execution times comparison of these Plans, the
Pyramid topology was found to be the best. Therefore, to compare the execution times
for different values ofNSB, the Pyramid Topology is selected for simulation.

The execution times obtained on the Pyramid Topology architecture for the NBCT
Plan P6 and sequential processing of block comparison in Plan PIl for 625 x 423
image size, using NSB = 10%,30%,50% and 75% are given in table 5.7. SIF values
derived from the data given in table 5.7 are given in table 5.8. From the execution
times table it can be seen that the least execution time is obtained on 21 processors.
SIF values shows that the maximum SIF value can be obtained on 21 processors.
After that the SIF value decreases, because the communication time is considerably
higher as compared to NBCT on higher Number of Processors. From table 5.8, we
can see that the SIF value of 1.07 for NSB = 10%, 1.38 for NSB = 30%, 1.86 for NSB
= 50%, and 3.44 for NSB = 75% obtained from simulation, for NP = 1, is close to the
SIF value of 1.08, 1.377, 1.889, 3.526 respectively obtained by analytical means;
given in table 2.8.

Table 5.7 Ex. times for NBCT Plan P6 and sequential block comparison with Plan P11

Number of Execution times in msec.

Processors- NBCT 10% 30% 50% 75%
NP NSB NSB NSB NSB

1 1871.8 1745.6 1356.37 1006.3 544.14

5 386.07 373.23 283.17 213.66 116.02

9 359.84 318.53 240.92 181.32 100.77

21 309.03 226.41 186.31 145.43 79.21

37 224.55 239.29 196.86 176.55 103.45

Table 5.8 SIF values for Plan P6 and Plan P11

Number of Speed Improvement Factor - SIF

Processors-NP 10% 30% 50% 75%
NSB NSB NSB NSB

1 1.07 1.38 1.86 3.44

5 1.03 1.36 1.81 3.33

9 1.13 1.49 1.99 3.57

21 1.36 1.66 2.12 3.90

37 0.94 1.14 1.27 2.17

www.manaraa.com

140 Simulation of Digital Image Compression

TI/TNP
where,
Speedup for N processors,
Time taken by a single processor,

Time taken by NP processors.

5.4 Performance Comparison of Parallel Architectures

Performance of parallel computer architectures can be measured in terms of speedup,
scaleup and efficiency. Tables A.21 to A35 give the speedup for the simulated Plans
for various Number of Processors and for three different image sizes and speedup
graph of the same are shown in figure Ala to A15a respectively. From these tables
and graphs we can see that the speedup increases with the increase in Number of
Processors (NP) and at some point it starts decreasing with the increase in Number of
Processors. The point at which the speedup starts decreasing is defmed as the scaleup
for the Plan.

Speedups for the Non-Block Comparator Technique Plans with Non-Inter­
Processor Communication (NIPC) are given in tables A.21 to A.26. Tables A27 to
A.32 gives the speedup for the Block Comparator Technique Plans with Non-Inter­
Processor Communication (NIPC) in which Number of Similar Blocks (NSB) = 10%.
Speedup obtained for the Inter-Processor Communication Plans for the Block
Comparator Technique is given in tables A.33 to A.35. Comparison of speedup values
obtained for different Plans are discussed in the following sections.

5.4. 1 Comparison of Speedup

Speedup for NP processors was defmed in chapter 3, as the time taken by a single
processor divided by the time taken by NP processors. Speedup (S) of parallel
processor is given by,

S

Comparison of speedup obtained for the NIPC Plans is given in section 5.4.1.1.
Comparison of speedup obtained for the IPC Plans is given in section 5.4.1.2. Section
5.4.1.3 gives the comparison of speedup obtained for different values ofNSB.

5.4.1.1 Comparison of Speedup for the NIPC Plans: This section gives the
comparison of speedup for the NIPC Plans. Comparison of maximum speedup for the
NBCT Plans is discussed in section 5.4.1.1a and that for the BCT Plans is discussed in
section 5.4.1.lb. Comparison of maximum speedup ofNBCT and BCT Plans is given
in section 5.4.1.lc.

5.4.1.1a Comparison of Maximum Speedup for the NBCT Plans: Table 5.9 shows
a comparison of the maximum speedup for the various NBCT Plans, which are
extracted from the appendix A; tables A21 to A26. From these tables the following
conclusions can be derived:

www.manaraa.com

Simulation of Digital Image Compression 141

1. For the Non-Block Comparator Teclmique the higher values of speedup can be
obtained on the Shared Memory Architecture with Local-plus-Global Memory
organisation.

2. Of the various Distributed Memory Architectures, highest values of speedup can
be obtained on the Torus Topology for the 125 x 125 image size, the Pyramid
Topology gives higher values of speedup for the other two image sizes.

3. Of the two different Shared Memory Architectures, higher value of speedup can
be obtained on the Shared Memory Architecture with Local-plus-Global Memory
organisation for all image sizes.

Table 5.9 Maximum speedup comparison for the NBCT Plans .
Plan Memory Memory Speedup-S

Architectu organisat NP 125 x NP 625 NP For
re ion I 125 image x 429 1100 x

topology
image 900 image

P2 Shared Global 16 6.30 25 7.95 25 7.87
Memory

P3 ArchitectuI Global 20 10.73 20 9.60 20 9.35
e & Local

P4 Distributed Tree 27 7.25 27 6.99 27 6.97

P5 Memory Torus 21 9.61 21 7.13 21 7.13

P6 ArchitectuI Pyramid 37 8.36 37 8.34 37 8.42

P7 e Cube 28 6.89 28 6.75 28 7.14

5.4.l.1b Comparison of Maximum Speedup for the BCT Plans: Table 5.10 shows
a comparison of the maximum speedup values obtained for the various BCT Plans,
which are extracted from the appendix tables A.27 to A.32. From this table we can
arrive at the following conclusions:

I. Of the two Shared Memory Architectures, the higher values of speedup can be
obtained on the Shared Memory Architecture with Local-plus-Global Memory
organisation.

2. Of the various Distributed Memory Architectures, highest value of speedup can
be obtained on the Pyramid Topology for all image sizes.

3. Of the two different Architectures for the Non-Block Comparator Technique the
higher values of speedup can be obtained on the Shared Memory Architecture
with Local-plus-Global Memory organisation.

www.manaraa.com

142 Simulation ofDigital Image Compression

Table 5.10 Maximum speedup comparison for the BCT Plans

Plan Memory Memory Speedup-S

Architectu organisat NP 125 x NP 625 NP For
re ion I 125 image x 429 1100 x

topology
image ~OO image

P8 Shared Global 16 6.30 16 6.33 16 6.35
Memory

P9 Architectu Global 20 9.75 20 8.71 20 8.70
e & Local

PI Distributed Tree 15 6.56 15 6.72 15 6.19

PlO Memory Torus 9 4.91 9 5.01 13 5.44

Pll Architectu Pyramid 21 7.70 21 7.71 21 7.66

P12 e Cube 9 5.43 9 5.48 9 5.48

5.4.1.1c Comparison of Speedup for the NBCT and BCT Plans: Table 5.11 gives a
comparison of the maximum speedups obtained for the NBCT Plan and the BCT
Plans. From this table we can see that the maximum speedups for the NBCT Plan are
higher as compared to the same for the BCT Plans.

Table 5.11 Maximum speedUp comparison for the NBCT and the BCT Plans

Memory Memory Speedup-S

Architect organisatio For 125 x 125 For 625 x429 For 1100 x 900
ure n I topology image image image

NBCT BCI NBCT BCT NBCT BCT

Shared Global 6.30 6.30 7.95 6.33 7.87 6.35
Memory

Architectu Global & 10.73 9.75 9.60 8.71 9.35 8.70
re Local

Distributed Tree 7.25 6.56 6.99 6.72 6.97 6.19

Memory Torus 9.61 4.91 7.13 5.01 7.13 5.44

Architectu Pyramid 8.36 7.70 8.34 7.71 8.42 7.66

re Cube 6.89 5.43 6.75 5.48 7.14 5.48

www.manaraa.com

Simulation of Digital Image Compression 143

5.4.1.2 Comparison of Speedup for the fPC Plans: Table 5.12 gives the speedup
comparison of the Shared Memory and the Distributed Memory Architecture.
Comparing these two architectures we can see that,
• The speedup values obtained for the Pyramid Topology (Plan 15) is higher than

that for the other two.

Table 5.12 Speedup comparison of two architectures

Plan Memory Memory Speedup-S

Architectur organisat NF 125 x NP 625 NP For
e ion I 125 image x 429 1100 x

topology
image 900 imagE

P13 Shared Global 13 5.21 13 5.83 13 5.84
Memory & Local

Architecture

P14 Distributed Torus 13 5.57 13 5.91 13 5.97

P15 Memory Pyramid 21 8.70 21 7.93 21 7.69

Architectur

e

5.4.1.3 Comparison of Speedup for Different NSB: Table 5.13 gives the speedup on
the Pyramid Topology with 625 x 429 image size for NSB = 10%, 30%, 50%, and
75% and speedup graphs of the same are shown in figure 5.4. From this table the
following conclusions can be derived:

• Speedup values for the BeT are higher those for the NBCT for NP ~ 21. For NP
= 37 the NBCT gives higher speedup as compared to the BCT.

• By comparing the speedup values obtained for NSB = 10% and 30%, it can be
seen that speedup for NSB = 30% is higher than that of for NSB = 10% for NP ~

9.
• By comparing the speedup values obtained for NSB = 30%, 50% and 75%, it can

be seen that the speedup decreases as NSB increases for all values of NP. This
indicates that as NSB increases, the computation time for block comparison is
significantly higher than the computation time for comparing the image on the
parallel processor.

www.manaraa.com

144 Simulation of Digital Image Compression

Table 5.13 Speedup for the NBCT Plan P6 and the BCT Plan P11 with different NSB

Number of Speedup - S

Processors- NBC NSB=l NSB=30 NSB=50 NSB=75
NP T 0% 0/0 % %

1 1 1 1 1 1

5 4.65 4.68 4.79 4.71 4.69

9 5.2 5.48 5.63 5.55 5.4

21 6.06 7.71 7.28 6.92 6.87

37 8.34 7.29 6.89 5.7 5.26

~o
o
<'l
II
III
(J)

z
Image Compression

Technique

5
Number of

Processors· NP

,
en

Figure 5.4 Speedup graph for Plans P6 and P11 for different NSB values

5.4.2 Comparison of Scaleup

Scaleup of a parallel architecture is a function of the maximum number of processors
at which the speedup starts decreasing. Scaleup was defmed in chapter 3, as the
number of processors at the point of maximum speedup. Section 5.4.2.1 gives a
comparison of the scaleup values obtained for the NIPC Plans and section 5.4.2.2
gives a comparison of scaleup values obtained for the IPC Plans.

www.manaraa.com

Simulation ofDigital Image Compression 145

5.4.2.1 Scaleup Comparison for the NIPC Plans: A comparison of scaleup obtained
for the Non-Block Comparator Technique (NBCT) is given in section 5.4.2.1a and the
same for the Block Comparator Technique (BCT) in section 5.4.2.1b. Comparison of
the two techniques is given in section 5.4.1.lc.

5.4.2.1a Scaleup Comparison for the NBCT Plans: Table 5.14 shows a comparison
of the scaleup obtained for the NBCT Plans. From this table the following conclusions
can derived:

1. For the Shared Memory Architectures the hybrid memory organisation (Plan P3)
gives higher scaleup than a purely Global Memory organisation for 125 x 125
(small) image size. For the medium and the large image sizes the Global Memory
organisation (Plan P2) gives higher values of scaleup.

2. The Distributed Memory Architectures give highest values of scaleup as
compared to the Shared Memory Architectures.

3. Pyramid Topology (Plan P6) gives the best values for scaleup.

Table 5.14 Scaleup comparison for the NBCT Plans

Memory Plan Scaleup-S

Architecture For 125 x For 625 x For 1100 x 900
125 image 429 image image

Shared Memory P2 16 25 25

Architecture P3 20 20 20

Distributed P4 27 27 27
Memory

Architecture P5 21 21 21

P6 37 37 37

P7 28 28 28

5.4.2.1b Scaleup Comparison of the BCT Plans: Table 5.15 shows a comparison of
the scaleup values obtained for the BCT Plans. From this table the following
conclusions can be derived:
1. The hybrid memory organisation (Plan P9) gives higher scaleup than a purely

Global Memory organisation for all image sizes.
2. The Distributed Memory Architectures give higher values of scaleup as compared

to the Shared Memory Architectures.
3. Pyramid topology (Plan Pll) gives the best values for scaleup.

www.manaraa.com

146 Simulation of Digital Image Compression

Table 5.15 Scaleup comparison for the BCT Plans

Memory Plan Scaleup-S

Architecture For 125 For 625 For 1100 x
x 125 image x 429 image 900 image

Shared P8 16 16 16
Memory

Architecture P9 20 20 20

Distributed PI 15 15 15

Memory PlO 9 9 13

Architecture Pll 21 21 21

P12 9 9 9

5.4.2.1c Scaleup Comparison of the NBCT and the BCT Plans: This section gives
a comparison of scaleup values obtained for the BCT and the NBCT Plans. Table 5.16
is derived from the tables 5.14 and 5.15. The following conclusions can be derived
from table 5.16:
I. For the Shared Memory Architectures, the scaleup values obtained for the NBCT

are either higher or the same as those obtained for the BCT.
2. For the Distributed Memory Architectures, the scaleup values obtained for the

NBCT is higher than that obtained for the BCT.
Thus, the Block Comparator Technique does not scaleup as well as the Non-Block

Comparator Technique.

Table 5.16 Scaleup comparison for the NBCT and the BCT Plans

Memory Memory Scaleup

Architect organisati For 125 x 125 For 625 x 429 For 1100 x
ure on / topology image image 900 image

NBCT BCT NBCT BCT NBCT BCT

SharedM Global 16 16 25 16 25 16

Architect Global & 20 20 20 20 20 20
ure Local

Distribute Tree 27 15 27 15 27 15

Memory Torus 21 9 21 9 21 9

Architect Pyramid 37 21 37 21 37 21

ure Cube 28 9 28 9 28 9

www.manaraa.com

Simulation of Digital Image Compression 147

5.4.2.2 Scaleup Comparison of the IPC Plans: Table 5.17 gives a comparison of the
scaleup values obtained for the Shared Memory and the Distributed Memory
Architectures. By comparing these two architectures it can be seen that,
• Scaleup for the Pyramid Topology is the highest.

Table 5.17 Scaleup comparison of two architectures

PI Memory Memory Scaleup-S
an

r--
Architecture organisati For For 625 For 1000

on / topology 125 x 125 x429 x 900
image image image

PI Shared Memory Global & 13 13 13
3 Local

-
Architecture

PI Distributed Torus 13 13 13
4 Memory

r--
PI Architecture Pyramid 21 21 21

5

5.4.3 Comparison of Efficiency

Efficiency (11) was defined in chapter 3, as the average speedup of each processor in a
parallel processor, and is given by,

S/NP,

where:

11
S
NP

Efficiency,
Speedup of the parallel processor,
Number of Processors.

The efficiency graphs for Plans PI to P15 are shown in appendix A, figures A.Ib
to A.15b respectively. From these figures we can see that the efficiency of 50% or
higher was obtained for some Number of Processors. The highest NP at which
efficiency is greater than 50% is called as Efficiency Cutoff Point (ECP) in this book.
In other words, from cost-benefit analysis point of view a parallel processor with NP
= ECP would be most cost effective.

Section 5.4.2.1 gives the efficiency comparison of the NIPC Plans, and section
5.4.2.2 gives the efficiency comparison of the IPC Plans.

www.manaraa.com

148 Simulation of Digital Image Compression

5.4.3.1 Efficiency Comparison of the NIPC Plans: Efficiency graphs for the NBCT
Plans are shown in appendix A, figures A.lb to A.6b, and these for the BCT Plans are
shown in figures A.7b to A.12b. The ECP values are extracted from these figures and
are tabulated in table 5.18. From this table, we can conclude that,
1. Of the different Architectures, the ECP value is the highest on the Shared

Memory Architecture with Local-plus-Global Memory organisation.
2. Of the two Shared Memory Architectures, the ECP value is higher on a Shared

Memory Architecture with Local-plus-Global Memory organisation.
3. Of the various Distributed Memory Architectures, the ECP value is almost same

for all topologies.

Table 5.18 Efficiency Cutoff Point for the NIPC Plans

Memory Memory Efficiency Cutoff Point - ECP

Architect organisatio For 125 x 125 For 625 x 429 For 1100 x
ure n / topology image image 900 image

NBC BCT NBCT BCT NBC B
T T CT

Shared Global 7 7 11 7 16 7
Memory

Architectu Global & 11 11 11 11 16 11
re Local

Distributed Tree 9 9 9 9 9 9

Memory Torus 9 5 9 5 9 5

Architectu Pyramid 9 9 9 9 9 9
re

Cube 9 9 9 9 9 9

5.4.3.2 Efficiency Comparison of the fPC Plans: Efficiency graphs for the BCT
Plans are shown in appendix A, figures A.13b to A.15b. The ECP values are extracted
from these figures and are tabulated in table 5.19. From this table, we can conclude
that,
1. Of the various architectures, the ECP value is higher on Distributed Memory

Architectures.
2. Of the two Distributed Memory Architectures, the ECP values is same for

Pyramid Topology and Torus Topology.

www.manaraa.com

Simulation of Digital Image Compression

Table 5.19 Efficiency Cutoff Point for the IPC Plans

149

PI Memory Memory Efficiency Cutoff Point -ECP
an

f---

Architecture organisat For 125 For 625 x For 1000 x 90(J
ion / x 125 429 image image

topology image

PI Shared Global & 7 9 9
3 Memory Local

f---

Architecture

PI Distributed Torus 9 9 9
4 Memory

f---

PI Architecture Pyramid 9 9 9
5

5.5 Summary

Analytical modelling alone is not sufficient to evaluate the behaviour of parallel
algorithms. Therefore the Network U.5, a discrete event simulation package, was
chosen for the simulation of Digital Image Compression technique.

Simulation of techniques for implementing Digital Image Compression on parallel
computers involve developing the models, modelling, validation and experimentation
with the models. This chapter explained all of these aspect of the simulation done with
the help of the Network 11.5 simulation package.

Execution times obtained for the simulation experiments were tabulated for each
model. Experimental results confirmed that the Pyramid architecture performed the
best in terms of speedup, scaleup and efficiency.

Simulation times obtained for different values of NSB were also tabulated. From
speedup figures it could be determined that the scaleup of twentyone and Efficiency
Cutoff Point of about nine can be obtained. This implies that even though there is
increasing speedup values for upto twenty one processors, the marginal cost of adding
more than nine processors is rather high, In other words, from cost-benefit analysis
point of view a nine processor system would be most cost effective.

In this chapter the divide and conquer method was used for comparing blocks in an
image, and the block comparison step took place on the host processor. Compression
time can be further reduced by parallelising the block comparison step as well.

www.manaraa.com

150 Simulation of Digital Image Compression

Figure 5.5a Host processor specification form

~

Figure 5.5b PE·1 specification form

www.manaraa.com

Simulation of Digital Image Compression 151

Figure 5.6b TD-2 specification form

www.manaraa.com

152 Simulation of Digital Image Compression

Figure 5.7 50-1 specification form

Figure 5.8 Module 1: ·Processlmg on Hosf'

www.manaraa.com

Simulation of Digital Image Compression 153

Figure 5.9 Module 2: "Processlmg on PEn

Figure 5.10 Module 3: "Send Complmg to SO"

www.manaraa.com

154 Simulation of Digital Image Compression

Figure 5.11a Run parameter form

Figure 5.11 b Utilisation graph of the host processor and the PE-1 at run time

www.manaraa.com

Simulation of Digital Image Compression 155

Figure 5.12 Animation parameter specification menu
§:'.:~

Figure 5.13 Plot parameter specification menu

www.manaraa.com

156 Simulation of Digital Image Compression

Figure 5.14 Time-line status graph

&::;~'

Figure 5.15 a Utilisation graph of host processor

www.manaraa.com

Simulation of Digital Image Compression 157

Figure 5.15 b Utilisation graph of PE-1

Figure 5.15 c Utilisation graph of PE-2

www.manaraa.com

158 Simulation of Digital Image Compression

Figure 5.16 Utilisation of TD-1 in Shared Memory Architecture

Figure 5.17 Utilisation of transfer devices on Distributed Memory Architecture
with Pyramid Topology

www.manaraa.com

6 CONCLUSIONS

6.1 Introduction

This chapter gives the main conclusions derived from the research work presented in
this book and some directions for future research.

The DCT-based JPEG algorithm was chosen for this research because it is one of
the most widely used image compression algorithms, and because the results could be
applied to the MPEG algorithm as well. An enhancement to the JPEG algorithm,
called the Block Comparator Technique was introduced. It was shown that the Block
Comparator Technique increases the speed of compression operation and improves
the compression ratio.

To study the effectiveness of parallel processing, the JPEG algorithm was
implemented on three parallel computer architectures, viz., the Mercury system, the
Shiva system and the Param system. From the experimental results obtained on these
three architectures, it was shown that the system with hybrid memory architecture,
gives the best performance in terms of speedup, scaleup and efficiency.

A number of parallel processing Plans were simulated using the Network 11.5
simulation package. From the results obtained for different options, it was shown that
the execution time obtained for the Non-Block Comparator Technique is the least on
the shared memory architecture with global and local memory, and scaleup on the
pyramid topology is higher than that for other architectures.

With the widespread application of multimedia systems and increasing data traffic
due to the transmission of still and moving pictures, compression of image data has
become very important. The main aim of this project was to investigate techniques for
improving the performance of the DCT-based JPEG algorithm. There are three main
components of this research project, namely:

1) An enhancement to the JPEG algorithm was proposed. This enhancement is
called the Block Comparator Technique. The Block Comparator Technique
was analysed and the improvements in the performance of the JPEG algorithm
were investigated.

159

www.manaraa.com

160 Conclusion

2) The JPEG algorithm was implemented on three different parallel machines.
Improvement in the performance of the JPEG algorithm on the various
architectures was studied.

3) A more detailed study of parallel processing of the JPEG algorithm was
carried out by using discrete event simulation.

The different methods involved in the Block Comparator Technique and the
conclusions derived from these methods are discussed in section 6.2. The conclusions
derived from the experimental results obtained on the three parallel systems are given
in section 6.3. A number of important implementation options were simulated using
the Network 11.5 simulation package. The conclusions derived for the simulation
results are discussed in section 6.4. Section 6.5 gives some directions for future
research.

6.2 Block Comparator Technique Enhancement to the JPEG
Algorithm

Based on the algorithm used, digital image compression techniques can be broadly
classified as Vector Quantisation (VQ), Fractal, Wavelet and Discrete Cosine
Transform (DCT) techniques. The digital image compression technique developed by
the Joint Photographic Experts Group (JPEG) is based on the Discrete Cosine
Transform. JPEG technique is widely used in a large variety of applications.
Therefore, the JPEG algorithm was chosen for this research purpose.

In the JPEG algorithm all image blocks are processed individually. These blocks of
compressed image are stored sequentially. In many types of images, there is the
possibility of having one or more similar blocks in the image. Improvement in
performance of the compression algorithm can be achieved by locating similar blocks
in the image. The Block Comparator Technique was developed to enhance the
performance of the JPEG algorithm.

With the help of mathematical analysis it was shown that the Block Comparator
Technique improves the speed of compression and reduces the size of the compressed
data file. Conclusions derived for the speed of operation are given in section 6.2.1.
Conclusions derived for image compression are given in section 6.2.2.

6.2.1 Speed of Operation

There are many methods for implementing the Block Comparator Technique
operation. Two options for the block comparison step were selected. The ftrst method
involves direct sample-by-sample comparison of all the blocks in an image. The
second method consists of sample summation, intensity comparison and sample-by­
sample comparison steps. Execution time of the JPEG algorithm was calculated in
terms of the number of arithmetic operations such as additions, subtractions,
multiplications, divisions, and comparisons. Each arithmetic operation was equated to
a number of Base Operations. The number of equivalent Base Operations for each
arithmetic operation can be determined for specific processors. Transputer IMS T805
processor was selected for calculating the number of Base Operations.

www.manaraa.com

Conclusion 161

Improvement in the speed of Block Comparator Technique over the JPEG
algorithm (called as Non-Block Comparator - NBCT in this book) was expressed in
terms of Speed Improvement Factor (SIF). Conclusions are derived by comparing SIF
values obtained for the two methods, and also by comparing SIF values for each
method individually. These conclusions are given in the following sections.

Common conclusions for the two methods: The Speed Improvement Factor (SIF) is
less than one for zero number of similar blocks (NSB) irrespective of the method used
and the image size. This result is expected, as there is no speed improvement when
there are no similar blocks; because there is additional computation time required for
the block comparison step. Therefore, the Block Comparator Technique (BCT) will
add unwanted computational overhead if there are no similar blocks in an image.

SIF values for all image sizes increase monotonically with increase in the value of
NSB. For most of the methods studied SIF is greater than one for NSB >= 10%. This
indicates that the Block Comparator Technique delivers dividends even for a small
number of similar blocks.

Conclusions for the Selection Sort method: For the Selection Sort method SIF
values for Number of Blocks (NB) = 256 is greater than one, for NSB in the range of
10% to 100%. Whereas, for NB = 4266 SIF is less than one even upto 50% similar
blocks. On the other hand for NB = 15594 SIF is less than one for all values ofNSB.
This indicates that there is no benefit in using the Block Comparator Technique in
conjuction with the Selection Sort method for large images. Selection Sort method is
suitable only for small image size.

Conclusion for the Divide and Conquer Sort method: For the Divide and Conquer
sort method SIF is greater than one for NSB >= 10% and increases monotonically
with NSB. SIF is almost equal for all image sizes for the same values of NSB.
Therefore, the Divide and Conquer method is suitable for all image sizes.

Conclusion for the Sample-by-Sample Comparison method: When similar blocks
are matched using sample-by-sample comparison, the SIF values for all image sizes
and values of NSB are almost equal to the SIF values for the Divide and Conquer
method, except for NSB = 100%. For NSB = 100%, SIF is greater for the Sample-by­
Sample comparison method than that for the Divide and Conquer Sort method.

Divide and Conquer Sort versus Sample-by-Sample Comparison: Block
comparison using Divide and Conquer Sort method is used to sort the image blocks
according to the intensities of these blocks. This helps in grouping the blocks of equal
intensities. Equal intensity blocks can then be distributed on a parallel computer
equally to all the CPUs to balance the work load on all processors. This improves the
speedup obtained by parallel processing.

The Block Comparison Technique using Sample-by-Sample comparison method
cannot be used for grouping of blocks with equal intensity values. Therefore, we can
say that the Block Comparator Technique using Divide and Conquer method is more
suitable for parallel processing.

www.manaraa.com

162

6.2.2/mage Compression Ratio

Conclusion

The Image Compression Ratio (ICR) was calculated for Digital Image Compression
Techniques with and without the proposed Block Comparator Technique. For the
Block Comparator Technique, the Compressed Image Data Structure can be
represented in many formats. lbree different structures were selected for the analysis:
Compressed Image Data Structure -1 (CIDS-1), CIDS-2 and CIDS-3.

The conclusions derived by comparing ICR values from all Compressed Image
Data Structures and by comparing ICR values from each CIDS separately are given in
the following sections.

Conclusions for all cmss: ICR increases as the image size increases irrespective of
the quality of a output image for all CIDSs. For each image size the ICR increases
with a decrease in the quality of the output image.

Conclusion for CmS-I: For the CIDS-1 and quality = 100% ICR is slightly greater
than the same for the Non-Block Comparator Technique. For quality = 75% ICR is
almost equal to that for the Non-Block Comparator Technique. For quality = 50% and
25% ICR values are less compared to the same for the Non-Block Comparator
Technique. This indicates that the size of the compressed image using Compressed
Image Data Structure-1 for the Block Comparator Technique is reduced only for
image quality greater than 75%.

Conclusions for Cm8-2: By comparing the ICR values ofCIDS-2 and CIDS-1, ICR
values for CIDS-2 are less than those for CIDS-l for all image sizes. This is because
all Unique Block Numbers are stored in the Unique Block Group. This data structure
is more robust than the CIDS-l data structure, because all the blocks numbers are
included in the data structure.

By comparing ICR values of CIDS-2 and the Non-Block Comparator Technique, it
was shown that the ICR values of CIDS-2 for quality = 100% are almost equal to that
of the Non-Block Comparator Technique. For quality less than 100%, ICR values are
less than the same for the Non-Block Comparator Technique.

Conclusions for CmS-3: By comparing ICR values of CIDS-3 with those for the
other two data structures, the ICR values for CIDS-3 are greater in all cases.

By comparing CIDS-3 with the Non-Block Comparator Technique, we can see that
the Image Compression Ratio values for CIDS-3 for quality = 100% and 75% are
greater than the same for the Non-Block Comparator Technique. For quality = 50%
the values are almost equal. This indicates that the CIDS-3 data structure is better than
the others for quality greater than 50%.

By comparing all three Compressed Image Data Structures, we can say that CIDS­
3 is the best of the three data structures in terms of compression ratio. Therefore, the
CIDS-3 data structure was chosen to measure the speed improvement over the Non­
Block Comparator Technique. Though CIDS-2 is more robust than either of the other
two data structures.

www.manaraa.com

Conclusion 163

Image Compression Ratio Improvement Factor (ICRIF): The improvement in the
compression ratio can be represented by the Image Compression Ratio Improvement
Factor (ICRIF).

From the ICRIF graph for CIDS-3 using NSB = 75%, we can see that the ICRIF is
almost equal for all image sizes irrespective of the quality of the output image. There
is no benefit in using the Block Comparator Technique for images with less than 50%
quality. By using the Block Comparator Technique we can get an improvement of2.8
times over the Non-Block Comparator Technique for quality = 100%.

From these speed and compressed image size comparisons we can say that the
Block Comparator Technique is a useful addition to enhance the JPEG compression
algorithm. The same Block Comparator Technique can be implemented on parallel
computers to speedup the operation even further.

6.3 Implementation of the Digital Image Compression
Algorithm

The JPEG digital image compression algorithm was implemented in a variety of ways
on three parallel computers. Each uniquely identifiable way of implementation is
called a 'Plan' in this book. Each Plan is specified as a 6-tuple consisting of image
compression technique, block dependency, image partitioning method, memory
architecture, network topology and the number of processors. Some of these Plans
were implemented on available parallel computers and other Plans were simulated
using the Network 11.5 simulation package. Performance of these Plans was evaluated
in terms of speedup, scaleup, and efficiency.

Parallel computers can be classified based on memory access technique, network
topology and some other issues. Three parallel computers were selected each with a
different memory architectures, viz. Mercury system with a distributed memory
architecture, Shiva system with a shared memory architecture and Param system with
a hybrid memory architecture. Non-Block Comparator Technique was implemented
on various number of processors on above three systems and the conclusions derived
from the experimental results are given in following section.

6.3.1 Performance Comparison of Digital Image Compression on Three
Parallel Computer Architectures

On the Mercury system the Helios Operating system was used as the parallel
programming environment. Helios has four levels of communication routines. JPEG
algorithm was implemented using two of these, namely, POSIC (Portable Operating
Set Instruction Codes) and MPP (Message Passing Primitives). By comparing POSIC
and MPP communication routines, we concluded that the speedup for MPP
communication routines is higher than that for the POSIC communication routines.
But the POSIC communication routines have greater functionality than the MPP
communication routines.

The JPEG algorithm was implemented on the Shiva and Pararn systems each with
three processors. The execution times for four processor to seventeen processor

www.manaraa.com

164 Conclusion

systems were estimated by extrapolating the results, obtained on a single processor
system, with the help of Gantt charts.

By comparing the results obtained we concluded that the hybrid memory
architecture based Param system gave the best results in terms of execution time,
speedup, scaleup and efficiency. Nonetheless, the JPEG algorithm is suitable for
implementation on distributed as well as shared memory systems.

6.4 Simulation of Digital Image Compression Techniques

Network 11.5 simulation package was used for the simulation of digital image
compression techniques on parallel architectures.

A total of more than four hundred models were simulated. The execution times
obtained from the simulation are tabulated for each model in Appendix A. Each
simulated model was examined with respect to execution time, and its derivatives,
namely, speedup, scaleup and efficiency. The knowledge gained from these models
enabled a comparison of the performance of digital image compression algorithm on
parallel computers.

The conclusions derived from the execution times obtained are discussed in section
6.4.1. Performance comparison in terms of speedup, scaleup and efficiency is
discussed in section 6.4.2.

6.4.1 Execution Times

The simulation models were fIrst divided into two sets based on the block dependency
method, namely, Non-Inter-Processor Communication (NIPC) method and Inter­
Processor Communication (IPC) method. The conclusion derived from the NIPC
Plans are given in section 6.4.1.1. Conclusions derived from the IPC Plans are given
in section 6.4.1.2. A total of twenty models were simulated for the BCT Plans using
Number of Similar Block (NSB) = 10%, 30%, 50%, and 75%. The conclusion derived
from the execution times obtained for these Plans are given in section 6.4.1.3.

6.4.1.1 Execution Times Obtained for Non-Inter-Processor Communication
Plans : By comparing the execution times obtained for the NBCT Plans and the BCT
Plans, we can see that the execution time for the BCT Plans is less compared to the
execution times for the NBCT Plans upto some Number of Processors (NP), after that
the execution time is higher for the BCT Plans. This indicates that the BCT fails to be
effective on a large number ofprocessors. The reason for this is explained below.

In the simulation models, the divide and conquer method was used for comparing
blocks in an image. In all of the Plans the block comparison step took place on the
host processor leading to sequential processing of the block comparison process.
Thus, the time taken for the BCT is higher than that for the NBCT as the number of
processors increases.

The least execution time was obtained for the NBCT and the BCT Plans on a
shared memory architecture with local-plus-global memory organisation.

www.manaraa.com

Conclusion 165

6.4.1.2 Execution Times for Inter-Processor Communication Plans : By
comparing three Inter-Processor Communication Plans it was shown that the
execution times obtained on the Distributed Memory Architecture with the Pyramid
topology is the lowest.

By comparing the execution times obtained for the NIPC Plans and the IPC Plans
on a distributed memory architectures, it can be seen that the IPC method is more
efficient for low number of processors whereas the NIPC method becomes more
efficient for higher number of processors. Because as the number of processors
increases, the communication time taken for transferring neighbouring samples
among processors increases for the IPC method. This leads to increase in overall
executior. time.

6.4.1.3 Execution Times for the BCT with Different NSB values: The Block
Comparator Technique was simulated for Number of Similar Blocks = 10%, 30%,
50% and 75%. By comparing execution times obtained for these Plans it was shown
that speed improves with an increase in the NSBs. The speed improvement figures
obtained for the simulation experiments, for the various NSB values, matched closely
to the analytically obtained values.

Highest speed improvement was obtained on twenty one processors connected in a
Pyramid topology.

6.4.2 Performance Comparison

Performance of parallel computer architectures was measured in terms of speedup,
scaleup and efficiency. Section 6.4.2.1 gives the conclusions derived from speedup
comparison. Scaleup comparison is given in section 6.4.2.2 and efficiency comparison
is given in section 6.4.2.3.

6.4.2.1 Speedup Comparison:
• On the shared memory architecture higher speedup is obtained with local-plus­

global memory organisation for all image sizes.
• The highest speedup is achieved on a distributed memory architecture with the

Pyramid topology.
• Higher number of similar blocks in a image lead to higher speedup.

6.4.2.2 Scaleup Comparison
• Scaleup also is the highest on the Pyramid topology. This indicates that both

techniques (NBCT and BCT) scaleup well on the pyramid topology.
• The scaleups values for the Block Comparator Technique for all image sizes are

lower as compared to the scaleup values for the Non-Block Comparator
Technique. Thus, the Block Comparator Technique does not scaleup as well as
the Non-Block Comparator Technique.

6.4.2.3 Efficiency Comparison: The highest number of processors at which
efficiency is greater than 50% is called as Efficiency Cutoff Point (ECP) in this book.
In other words, from cost-benefit analysis point of view a parallel processor with the
'number of processors' = ECP would be the most cost effective.

www.manaraa.com

166 Conclusion

• The ECP value is the highest on the shared memory architecture with local-plus­
global memory organisation for the NIPC method.

• The ECP value for the Pyramid topology is the highest for the IPC method.

6.5 Directions for Future Research

When this project was initiated a few years ago, low cost hardware implementations
of the JPEG and the MPEG standards were not readily available. At the present time
JPEG and MPEG chips/cards are readily available at reasonably low cost. But these
hardware devices are fixed for a specific standard. With rapid advancement in
compression technology a flexible image compression scheme is required. In such a
flexible scheme the two ends can negotiate the standard, and the parameters to be used
for image compression. For this scheme to work image compression and
decompression must be performed in software. To be able to perform real-time
motion picture compression and decompression in software parallel processing can be
employed.

The research work carried out in this project can be extended to include motion
picture compression. Some more specific directions for future work are presented
below.

1. Speed of Operation: The Selection Sort and the Divide and Conquer methods
were used for the block comparison step in the Block Comparator Technique. By
comparing the Speed Improvement Factors it was found that the Divide and Conquer
method is better than the Selection Sort method. But, there may be other sort methods
that perform better than the Divide and Conquer sort method for this application.
Therefore, future research can explore other sorting methods which may be faster than
the Divide and Conquer sort method, especially for parallel processing.

2. Quality of Service: Three Compressed Image Data Structure were used for the
Block Comparator Technique. From these Image Data Structures, the CIDS-2 was
found to be most robust, though the compressed image is slightly larger as compared
to one of the other structures (CIDS-3). This robustness is desirable for providing
good quality of service in many applications such as video-on-demand. Future
research can explore ways of reducing the compressed image size ofCIDS-2.

In the CIDS-2 all blocks include the block numbers. This helps to identify lost
blocks. If any of the blocks is missing, this block is replaced by an empty block. This
leads to blockiness in the image. Future research can focus on recovery of missing
blocks during decompression operation to reduce this blockiness effect, so that the
decompressed image can be ofbetter quality.

3. Reliability : In this research all processors in the parallel system were considered
to be operational. But there is a chance of breakdown of one or more of the processors
during task allocation, compression and collection of compressed data. Future
research can include development of reliable parallel processing techniques
specifically for image compression.

www.manaraa.com

Conclusion 167

4. ParaUel Block Comparison: In our study the block comparison step took place on
the host processor leading to sequential processing of the same. This leads to the fact
that the time taken for the Block Comparator Technique is higher on a large number
of processors as compared to the Non-Block Comparator Technique. Execution time
can be reduced further by parallelising the block comparison step.

www.manaraa.com

REFERENCES

Anderson, 90. Anderson, M. S. ; Drewer, P. C., "Design Overview of the Shiva",
Proceedings of the IEEE TENCON'90: 1990 IEEE Region 10 Conference on
Computer and Communication Systems, Hong Kong, 24 - 27 Sept. 1990, Vol. 1,
pp. 155 - 159.

Anderson, 92. Anderson, m. ; Yesberg, J. D. ; Yakovleff, A. J. et. al., "A
Heterogeneous Parallel Accelerator for Image Analysis and Radar Signal
Processing", Proceedings of the twenty fiveth Hawaii International Conference on
System Sciences, Kauai, HI, USA, 7 - 10 Jan. 1992, Vol. 1, pp. 129 - 138.

Ang, 91. Ang, P. H. ; Ruetz, P. A. ; Auld D., "Video Compression Makes Big Gains",
IEEE Spectrum, Oct. 1991, pp. 16 - 19.

Aravind,89. Aravind, R. ; Cash, G. L. ; Worth, J. P., "On Implementing The JPEG
Still-Picture Compression Algorithm", SPIE Visual Communications and Image
Processing IV, Vol. 1199, 1989, pp. 799 - 808.

Baran, 90. Baran, N., "Putting the Squeeze on Graphics", Byte, Dec. 1990, pp. 289 ­
294.

Barnsley, 93. Barnsley, M. F. ; Hurd, L. P., "Fractal Image Compression", A. K.
Peters Ltd., Wellsley, 1993.

Bevinakoppa, 92. Bevinakoppa, S. G. ; Sharda, H. N. ; Hulskamp, J. ; Sharda, N. K.,
"Digital Image Compression on a Network of Transputers", Transputers and
Parallel Applications Conference, Melbourne 4-5 Nov. 1992, pp 25-32.

Bevinakoppa, 94a. Bevinakoppa, S. G. ; Sharda, N. K. ; Sharda, H. N., "Performance
analysis of a parallel JPEG algorithm". PART94: Australian Workshop on Parallel
and Real Time system, 7-8 July 1994, Melbourne, pp. 42 - 52.

Bevinakoppa, 94b. Bevinakoppa, S. G. ; Sharda, N. K. ; Sharda, H. N.,
"Implementation of JPEG Algorithm on Shiva Parallel Architecture", IWPP: First
International Workshop on Parallel Processing, Bangalore, India, Dec. 27-31 1994,
pp. 184 - 188.

Bevinakoppa, 95. Bevinakoppa, S. G. ; Sharda, N. K. ; Sharda, H. N., "Parallel
Implementation of DCT-based Digital Image Compression on a Param System",
PART95: Australasian Workshop on Parallel and Real Time system, 7-8 August
1995, Perth, pp. 401 - 407.

Bhatkar, 91. Bhatkar, V. P., "Advanced Computing: Proceedings of the Centre for
Development ofAdvanced Computing", Eds. Bhatkar, V. P., Joshi, A. V., Sharma,
A. K., Tata Mc-Graw Hill Publishing Corporation Ltd., New Delhi, India, August
1988 - July 1991.

Bradey, 83. Bradey, P. ; Fox, B. L. ; Schrage, L. E., "A Guide to Simulation",
Springer-Verlag, Newyork, 1983.

169

www.manaraa.com

170 References

Browne, 89. Browne, R. F. ; Hodgson, R. M., " Mapping Image Processing
Operations onto Transputer Networks", 1989, Microprocessor and Microsystems.

Burns, 89. Burns, A. ; Wellings, A., "Real-time systems and their programming
languages", Addison-Welsy publishing company, 1989.

CACI, 94. CACI Products Company, "Network 115 User's Manual", 1994.
Chong, 90. Chong, M.N. ; Soraghan, 1. J., " Transputer Based Quadtree Data

Structure for Adaptive Transform Coding". Signal Processing V: Theroies and
Applications, 1990, pp. 1563-1566.

Chung-Ta King, 91. Chung-Ta King, "Skewed Partition - Theory and Practice",
1991 IEEE Conference.

Cockroft, 91. Cockroft, G. ; Hourwitz, L., "NEXTstep: Putting JPEG to Multiple
Uses", Communication of the ACM, April 1991, Vol. 34, No.4, pp. 45 and 116.

Cornell, 93. Cornell, E. ; Kurz, P., "Wavelets and Improved JPEG Fuel New
Generation of Digital Video Engines, AV Video 1993, pp. 40 - 46.

Cosman, 96. Cosman, P. C. ; Gray, R. M. ; and Vetterli, M., "Vector Quantisation of
Image Subbands: A survey", IEEE Transactions on Image Processing, Feb. 1996,
Vol. 5, No.2, pp. 202 - 225.

Draft, 90. "Coding of Moving Pictures and Associated Audio", Committee Draft
Standard - ISO 11172, ISO/MPEG 90/176 Dec. 1990.

Eknath, 91. Eknath, P. R. ; Bhasin, L. ; Degnekar, A. ed., "Param Parallel
Computer", Advanced Computing: Proceedings of the Centre for Development of
Advanced Computing, Eds. Bhatkar, V. P., Joshi, A. V., Sharma, A. K., Tata Mc­
Graw Hill Publishing Corporation Ltd., New Delhi, India, August 1988 - July
1991, pp. 71 - 85.

Elliott, 89. Elliott, J. ; Beaumont, 1. M. ; Grant, P. M. et. aI., "Real Time Videophone
Image Algorithm on a Concurrent Supercomputer". British Telecom Research
Laboratories.

Fleming, 88. Fleming, P. I., "Parallel Processing in Control: the Transputer and
Other Architectures",Peter Peregrinus Ltd., London, United Kingdom, 1988.

Furht, 94. Furht, B., "Multimedia Systems: An Overview", IEEE Multimedia, VoU,
No.1, Spring 1994, pp. 47 - 59.

Furht, 95a. Furht, B., "A guided Tour ofMultimedia Systems and Applications", IEEE
Computer Society Press Lab, Alamitos, California, 1995.

Furht, 95b. Furht, B. " A Survey of Multimedia Techniques and Standards- JPEG
Compression", Journal of Real-Time Imaging, Vol. I, No. I, April 1995.

Gall, 91. Gall, D., "MPEG: A Video Compression Standard for Multimedia
Applications", Communications of the ACM, April 1991, Vol. 34, No.4, pp. 47­
58.

Geetha, 91. Geetha, S. ; Kumar, P. ; Sandya, V., "Parallel Programming with Paras",
C-DAC Report, pp. 1-19.

Gersho, 92. Gersho, A. ; Gray, R. M., "Vector Quantisation and Signal Compression",
Kluwer Academic Publishers, Boston, 1992.

Harney, 91. Harney, K. ; Keith, M. ; Lavelle, G. et. a;., "The i750 Video Processor: A
Total Multimedia Solution", Communications of ACM, Vol. 34, No.4, April 1991,
pp. 65 -79.

www.manaraa.com

References 171

Hemery, 91. Hemery, F. ; Lazure, D. ; Delattre, E. et. aI., " An Analysis of
Communication and Multiprogramming in the Helios Operating System",
Microprocessing and Microprogramming, 32,1991,137-144.

Hord, 93. Hord, R. M., "Parallel Supercomputing in MIMD architectures", CRC
press, Florida, 1993.

Hunt, 93. Hunt, J. C. ; Kevlahan, N. K. ; Vassilicos, J. C. et. al., "Wavelets, Fractals,
and Fourier Transforms", Ed. Farge, M. ; Hunt, 1. C. ; Vassilicos, 1. C., Clarendon
Press, Oxford, 1993, pp. 1- 37.

lan, 92. Ian D., "Helios operating system", Perihelion Software Limited, 1992.
INMOS, 89. INMOS ltd. "INMOS: Transputer Databook", 1989.
Intel, 90. i860 Hardware Reference Manual, Intel, 1990.
Jain, 89. Jain, A K., "Fundamentals of digital image processing", Prentice Hall,

1989.
Kajiwara, 92. Kajiwara, K., "JPEG compression for PACS", Computer Methods and

Programs in Biomedicine, No. 37, 1992, pp. 343-351.
Karnak, 92a. Karnak, D. A et. aI., "Shiva Mark I - Detailed Hardware Design", lTD

Divisional Paper, Adelaide, 1992.
Karnak, 92b. Karnak, D. A ; Yakovleff, A. 1. ; Yesberg, J. D. et. aI., "Shiva Mark II

Hardware Architecture, Virsion 1", lTD Divisional Paper, Adelaide, May 1992.
Kinoshita, 92. Kinoshita, T ; Nakahashi, T., "A 130 Mb/s Compact HDTV CODEC

Based on a Motion-Adaptive DCT Algorithm", IEEE Journal on Selected Areas in
Communications, Vol. 10, No.1, Jan. 1992, pp.122 - 129.

Koornwinder, 93. Koornwinder, T. H., "Wavelets: An Elementary Treatment of
Theory and Applications", World Scientific Publishing Co. Pte. Ltd., 1993.

Krishnamurthy, 89. Krishnamurthy, E. V., "Parallel Processing Principles and
Practice", Addison-Wesley Publishing Company, Singapore, 1989.

Kruse, 94. Kruse, R. L., "Data Structures and Program Design", Prentice Hall,
Englewood Cliffs, New Jersey, 1994.

Kumar, 92. Kumar, M. K. ; Kumar, P. S. ; Basu, A, "A Library Environment for
Distributed Memory Multiprocessors", Proceedings. Sixth International Parallel
Processing, Beverly Hills, CA, USA, 23 - 26 March 1992, pp. 483 - 486.

Kumar, 94. Kumar, V. et aI., "Introduction to Parallel Computing: Design and
Analysis of Algorithms", Redwood City, California, Benjamin/Cumming,
Publishing Company, 1994.

Leger, 91. Leger, A ; Omachi, T. ; Wallace, G. K., "JPEG Still Picture Compression
Algorithm", Optical Engineering, July 1991, Vol. 30, No.7, pp.947 - 954.

Leigh, 83. Leigh, J. R., "Modelling and Simulation", Peter Peregrinus Ltd., London,
UK,1983.

Leonard, 91. Leonard, M., "IC Executes Still-Picture Compression Algorithms",
Electronic Design, May 23, 1991, pp. 49 - 53.

Lewis, 92. Lewis, T. G.; EI-Rewini, H., "Introduction to Parallel Computing",
Prentice Hall, 1992.

Liou, 91. Liou, M., "Overview of the Px64 Kbits/s Video Coding Standard", Comm.
of the ACM, Vol. 34, No.4, April 1991, pp. 59-63.

Margulis,90. Margulis, N., i860 Microprocessor Architecture, Osborne, 1990.

www.manaraa.com

172 References

Maurer,88. Maurer, P. M., "The Dataflow Model ofComputation in an Enhanced Von
Neumann Processor", IEEE Symposium on Parallel Processing, 1988, pp. 235 ­
239.

Mitchell, 90. Mitchell, D. A ; Thompson, 1. A ; Manson, G. A et. aI., "Inside The
Transputer", Backwell Scientific Publications, 1990.

Murthy, 91. Murthy, T. S. ; Eknath, P. R., "Param Vector Facility", Advanced
Computing: Proceedings of the Centre for Development of Advanced Computing,
Eds. Bhatkar, V. P., Joshi, A. V., Sharma, A K., Tata Mc-Graw Hill Publishing
Corporation Ltd., New Delhi, India, August 1988 - July 1991, pp. 86 - 89.

Nacken, 93. Nacken, P., "Image Compression Using Wavelets", Ed. Koomwinder, T.
H., in Wavelets: An Elementary Treatment of Theory and Applications, World
Scientific, Singapore, 1993.

Naylor, 68. Naylor, T. H. ; Balintfy, 1. L. ; Burdick, D. S. et. aI., "Computer
Simulation Techniques", John Wiley & Sons, Inc., New York, 1968.

Nelson, 92a. Nelson, M., "The Data Compression Book: featuring fast, efficient data
compression techniques in C ", M&T Books, 1992.

Nelson, 92b. Nelson, M. ; Cavaiuolo, M. ; Yakovleff, A, "An Architecture for Real­
Time 3D Graphical Simulation", International Conference on Automation,
Robotics and Computer Vision, Singapore, Sept. 1992, pp. CV.17.5.1 - CV.17.5.5.

Nelson, 93a. Nelson M. ; Yakovleff, A., "Shiva Programming Notes", Defence
Science Technology and Organisation Technical report, Adelaide, 27 Sept. 1993.

Nelson,93b. Nelson, M. ; Cavaiuolo, M. ; Yakovleff, A., "A Heterogeneous
Architecture for Stereoscopic Visualisation", First IEEE Virtual Reality Anual
International Symposium Seattle, USA, SEP. 1993, pp. 349 - 355.

Ogawa, 92. Ogawa, K. ; Urano, T. ; Konda, K. et aI., "A single chip
CompressionlDecompression LSI Based on JPEG", IEEE Transactions on
Consumer Electronics, Vol. 38, No.3, Aug. 1992, pp. 703-710.

Papathanassiadis, 92. Papathanassiadis T. "Image block partitioning: A Compression
Technique suitable for Parallel Processing", Conference publication, Nov. 1992.

Pennabaker, 93. Pennabaker, W. B. ; Mitchell, J. L., "JPEG Image Data Compression
Standard", Van Nostrand Reinhold, New York, 1993.

Pountain, 87. Pountain, D., "A Tutorial Introduction to OCCAM Programming",
Inmos Ltd., 1987.

Quinnell, 93. Quinnell, R. A., "Image Compression Part2", EDN Design Feature,
March 4, 1993, pp. 120 - 126.

Ram, 91. Ram, N. M. ; Perianayagam, K. S. ; Morra, R. ed., "A High Performance
Parallel System Architecture", Advanced Computing: Proceedings of the Centre
for Development of Advanced Computing, Eds. Bhatkar, V. P., Joshi, A V.,
Sharma, A K., Tata Mc-Graw Hill Publishing Corporation Ltd., New Delhi, India,
August 1988 - July 1991, pp. 663 - 675.

Ramaswamy, 93. Ramaswamy, S. V. ; Miller, G. D., "Multiprocessor DSP
Architecture That implement The FCT Based JPEG Still Picture Image
Compression Algorithm With.Arithmetic Coding", lEE Transactions on Consumer
Electronics, Vo1.39, No.1, Feb. 1993, pp. 1- 5.

Rao, 91. Rao, C. M. ; Ram, M. N. ; Perianayagam, K. S. ed., "MTK/860 - A Multi
Threading Kernel for the i860", Advanced Computing: Proceedings of the Centre
for Development of Advanced Computing, Eds. Bhatkar, V. P., Joshi, A V.,

www.manaraa.com

References 173

Sharma, A. K., Tata Mc-Graw Hill Publishing Corporation Ltd., New Delhi, India,
August 1988 - July 1991, pp. 676 - 682.

Rashinkar, 91. Rashinkar, P. ; Bhasin, L. ; Balachandran, S. etl., "Parallel Processing
Application Accelerators", Advanced Computing: Proceedings of the Centre for
Development of Advanced Computing, Eds. Bhatkar, V. P., Joshi, A. V., Sharma,
A. K., Tata Mc-Graw Hill Publishing Corporation Ltd., New Delhi, India, August
1988 - July 1991, pp. 90 - 95.

Rinaldo, 95. Rinaldo, R, ; Calvagno, G., "Image Coding by Block Prediction of
Multireso1ution Subimages", IEEE Transactions on Image Processing, Vol. 4, No.
7, July 1995, pp. 909 - 920.

Reitman, 81. Reitman, J., "Computer Simulation Applications", Robert E. Krieger
Publishing Company, Florida, 1981.

Roberts, 83. Roberts, N. ; Anderson, D. ; Deal, R. et. al., "Introduction to Computer
Simulation: A System Dynamics Modelling Approach", Addison-Wesley
Publishing Company, 1983.

Ruetz, 93. Ruetz, P. A. ; Tong, P. ; Luthi, D. A. et aI., " A Video Rate JPEG Chip
Set", Journal ofVLSI Signal Processing, Vol. 5, 1993, pp. 141 - 150.

SGS_Thomson, 91. SGS_Thomason, " The T9000 Transputer Products Overview
Manual", Inmos Ltd. 1991.

Sharda, 93. Sharda, N. K.; Bevinakoppa, S. G. ; Sharda, H. N., "Parallel
Implementation of Digital Image Compression Based on the JPEG Standard",
Technical report 32 COMP 6, Department of Computer and Mathematical
Sciences, Victoria University of Technology, Nov. 1993.

Sharda, 95. Sharda, N. K., "Information Networking", ACCT press, 1995.
Siegel, 85. Seigel, H. J., "Interconnection Networks for Large-Scale Parallel

Processing", McGraw-Hill Publishing Company, USA, 1985.
Sijsterrnan, 91. Sijsterrnans, F. ; Vander Meer, 1., "CD-I Full-Motion Video Encoding

on a Parallel Computer", Communications of the ACM, Vol.34, No.4, April 1991,
pp. 81 - 91.

Srivastava,91. Srivastava, A. K. ; Kshetramade, S. C, PRESHAK: a Generic Tool to
Implement Application Specific Message-Passing Communication Kemels for
Concurrent Machines, Proceedings. The fifth International Parallel Processing,
Symposium, Anaheim, CA, USA, 30 April- 2 May 1991, pp. 626 - 629.

Stephenson, 71. Stephenson, R. E., "Computer Simulation for Engineers", Harcourt
Brace Jovanwich, USA, 1971.

Sugai, 87. Sugai, M. ; Kanuma, A. ; Suzuki, K. et. aI., "VLSI Processor for Image
Processing", Proceedings of the IEEE, Vol, 75, No.9, Sep. 1989, pp. 1160 - 1165.

Sun, 90. Sun Microsystems, SBus Specification, 1990.
Tinker, 89. Tinker, M, "DVI Parallel Image Compression", Communications of the

ACM, Vol. 32, No.7, July 1989, pp. 844 -851.
Tulshibagwale, 94. Tulshibagwale, A. ; Parikh, S. ; Mahajan, S. ed., "The RISAM

Storage Manager for Parallel Architectures", Proceedings of the Third
International Conference on Parallel and Distributed Information Systems, Austin,
TX, USA, 28 - 30 Sept. 1994, pp. 69 - 70.

Udpikar, 91. Udpikar, V. ; Singh, R. K. ; Madhasudan, b. N. ed., "ImagePRO:
Transputer Based Interactive Image Procesing Package", Advanced Computing:
Proceedings of the Centre for Development of Advanced Computing, Eds.

www.manaraa.com

174 References

Bhatkar, V. P., Joshi, A. V., Sharma, A. K., Tata Mc-Graw Hill Publishing
Corporation Ltd., New Delhi, India, August 1988 - July 1991, pp. 437 - 443.

Ungere, 91. Ungere, T., " Parallelising C++ Programs for Transputer Systems", 32,
1991, Microprocessing and Microprogramming, pp. 463-70.

Vaaben, 91. Vaaben, J. ; Niss, B., "Compressing Images With JPEG", Information
Display 7 and 8, 1991, pp. 12 - 13 and 59.

Wallace,92. Wallace, G. K., "The JPEG Still Picture Compression Standard", IEEE
Transaction on Consumer Electronics, Vol. 38, No.1, Feb. 1992, pp. xviii - xxviv.

Yakovleff, 91. Yakovleff, A. ; Yesberg, 1. ; Karnak, D. et. aI., "An Expandable
Supercomputer Architecture with Dynamic Reconfigurability Properties", Fourth
Australian Supercomputer Conference, Gold Cost, Dec. 1991, pp. 175 - 83.

Yakovleff, 94. Yakovleff, A. ; Cavaiuolo, M., "A Simulation Environment for Very
Large Neural Networks", IEEE International Conference on Aucoustics, Speech,
and Signal Processing, Adelaide, Australia, April 1994, Vol. 2, pp. 577 - 580.

Zomaya, 96. Zornaya, A. Y, "Parallel Computing: Paradigms and Applications",
International Thomson Computer Press, London, 1996.

www.manaraa.com

APPENDIX A
Table A.1 Execution times for NIPC Plan P2 (NBCT on a Shared Memory Architecture
with Global Memory)

Number of Execution times in msec.
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP imaEe imaEe imaEe
1 112.32 1871.81 6844.12
3 47.15 768.68 3315.63
5 33.29 525.58 1931.63
7 25.84 409.43 1574.19
11 21.12 328.39 1213.44
16 17.82 267.73 1018.32
20 18.00 251.81 929.77
25 235.49 869.13
27 235.72 869.43

Table A.2 Execution times for NIPC Plan P3 (NBCT on a Shared Memory Architecture
with Local-plus-Global Memory)

Number of Execution times in msec.
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP imaEe imaEe imaEe
1 112.32 1871.81 6844.12
3 41.40 699.07 2557.27
5 27.69 476.79 1748.24
7 21.85 380.42 1397.12
11 15.12 278.39 1026.73
16 10.93 226.78 870.31
20 10.47 194.96 732.21
25 10.67 195.44 734.62

175

www.manaraa.com

176 Appendix A

Table A.3 Execution times for NIPC Plan P4 (NBCT on a Distributed Memory
Architecture with Tree Topology)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP imae:e imae:e imae:e
1 112.32 1871.81 6844.12
3 41.40 719.30 2631.21
5 32.82 529.36 1941.19
9 24.96 410.74 1503.83
15 18.77 315.96 1155.50
21 16.63 280.89 1034.26
27 15.49 267.72 981.38
33 16.09 279.42 993.62

Table A.4 Execution times for NIPC Plan P5 (NBCT on a Distributed Memory
Architecture with Torus Topology)

Number of Execution times in msec.
Processors- For 125 x 125 For 625 x429 For 1100 x 900

NP imae:e imae:e imae:e
1 112.32 1871.81 6844.12
3 41.40 719.30 2631.21
5 32.82 529.36 1941.19
9 20.75 342.29 1234.28
13 19.60 323.03 1180.84
17 16.16 271.72 995.82
21 11.69 262.58 959.29
26 16.09 266.42 976.67

Table A.5 Execution times for NIPC Plan P6 (NBCT on a Distributed Memory
Architecture with Pyramid Topology)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP imae:e imae:e imaee
1 112.32 1871.81 6844.12
5 23.36 386.07 1412.65
9 21.85 359.84 1317.72

21 18.15 309.03 1128.46
37 13.43 224.55 812.04
53 14.61 239.86 876.50

www.manaraa.com

Appendix A

Table A,6 Execution times for NIPC Plan P7 (NBCT on a Distributed Memory
Architecture with Cube Topology)

177

Number of Execution times in msec.
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP ima2e ima2e ima2e
1 112.32 1871.81 6844.12
5 23.36 386.07 1412.65

9 21.85 359.84 1317.72

28 16.30 277.49 959.14

49 29.38 387.65 1398.27

Table A.7 Execution times for NIPC Plan P8 (NSB = 10%) (BCT on a Shared Memory
Architecture with Global Memory)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP ima2e ima2e ima2e
1 104.65 1745.62 6382.80

3 47.62 717.63 2625.94

5 30.01 500.03 1830.35

7 24.41 414.76 1483.08

11 18.97 322.38 1179.25

16 16.62 275.64 1005.15

20 18.22 303.42 1109.62

Table A,8 Execution times for NIPC Plan P9 (NSB = 10%) (BCT on a Shared Memory
Architecture with Local-plus-Global Memory)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP imae:e imae:e imae:e
1 104.65 1745.62 6382.80

3 39.30 659.82 2414.62

5 26.43 440.38 1631.05

7 20.82 351.72 1264.48

11 15.28 260.90 954.54

16 12.76 229.10 800.43

20 10.73 200.42 733.24

25 10.75 217.98 818.73

www.manaraa.com

178 Appendix A

Table A.9Execution times for NIPC Plan P1 (NSB =10%) (BCT on a Distributed
Memory Architecture with Tree Topology)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x429 For 1100 x 900

-NP ima2e ima2e ima2e
1 104.65 1745.62 6382.80
3 41.07 689.33 2522.44
5 25.41 449.13 1644.43
9 19.93 329.57 1310.62
15 15.96 259.58 1030.67
21 16.84 281.22 1109.22

Table A.1 0 Execution times for NIPC Plan P10 (NSB =10%) (BCT on a Distributed
Memory Architecture with Torus Topology)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x429 For 1100 x 900

-NP ima2e ima2e ima2e
1 104.65 1745.62 6382.80
3 41.07 689.33 2522.44
5 25.41 449.13 1644.43
9 21.33 348.42 1373.29
13 23.80 400.83 1173.70
17 1325.98

Table A.11 Execution times for NIPC Plan P11 (NSB = 10%) (BCT on a Distributed
Memory Architecture with Pyramid Topology)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP ima2e ima2e ima2e
1 104.65 1745.62 6382.80
5 22.28 373.23 1366.00
9 19.26 318.53 1165.69

21 13.59 226.41 833.01
37 13.96 239.29 876.25

www.manaraa.com

Appendix A 179

Table A.12 Execution times for NIPC Plan P12 (NSB =10%) (BCT on a Distributed
Memory Architecture with Cube Topology)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP ima~e ima~e ima2e
1 104.65 1745.62 6382.80
5 22.28 373.23 1366.00
9 19.26 318.53 1165.69
28 19.94 334.80 1186.99

Table A.13 Execution times for IPC Plan P13 (NSB = 10%) (BCT on a Shared Memory
Architecture with Global Memory)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP ima2e ima2e ima2e
1 104.65 1745.62 6382.8
5 42.54 449.90 1653.58
7 25.96 363.67 1294.69
9 22.94 329.36 1164.74
13 20.09 299.42 1092.95
17 21.62 310.06 1125.71

Table A.14 Execution times for IPC Plan P14 (NSB =10%) (BCT on a Distributed
Memory Architecture with Torus Topology)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP ima~e ima~e ima2e
1 104.65 1745.62 6382.8
3 42.36 695.46 2542.94
5 30.33 439.70 1628.26
9 20.81 328.12 1143.87
13 18.80 295.36 1069.14
17 19.49 308.95 1123.73

www.manaraa.com

180 Appendix A

Table A.15 Execution times for IPC Plan P15 (NSB =10%) (BCT on a Distributed
Memory Architecture with Pyramid Topology)

Number of Execution times in msec.
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP ima2e ima2e ima2e
1 104.65 1745.62 6382.80
5 28.39 453.26 1648.53

9 20.15 324.59 1062.56
21 12.03 220.21 830.27
37 12.47 226.38 865.21

Table A.16 SIF values for NBCT Plan P3 and BCT Plan P9(on a Shared Memory
Architecture with Local-plus-Global Memory)

Number of Speed Improvement Factor - SIF
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP ima2e ima2e ima2e
1 1.07 1.07 1.07
3 1.05 1.06 1.06
5 1.05 1.08 1.07
7 1.05 1.08 1.10
11 0.99 1.07 1.08
16 0.98 0.99 1.09
20 0.98 0.97 1.00
25 0.91 0.90 0.90

Table A.17 SIF values for NBCT Plan P4 and BCT Plan P1(on a Distributed Memory
Architecture with Tree Topology)

Number of Speed Improvement Factor - SIF
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP ima2e ima2e ima2e
1 1.07 1.07 1.07
3 1.01 1.04 1.04
5 1.29 1.18 1.18
9 1.25 1.25 1.15
15 1.18 1.22 1.12
21 0.99 1.00 0.93

www.manaraa.com

Appendix A 181

Table A.18 SIF values for NBCT Plan P5 and BCT Plan P10(on a Distributed Memory
Architecture with Torus Topology)

Number of Speed Improvement Factor - SIF
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP imaee imaee imaee
1 1.07 1.07 1.07
3 1.01 1.04 1.04
5 1.29 1.18 1.18
9 0.97 0.98 1.09
13 0.82 0.81 1.01
17 0.75

Table A.19 SIF values for NBCT Plan P6 and BCT Plan P11 (on a Distributed Memory
Architecture with Pyramid Topology)

Number of Speed Improvement Factor - SIF
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP imaee imaee imaee
1 1.07 1.07 1.07
5 1.05 1.03 1.03
9 1.13 1.13 1.13
21 1.34 1.36 1.35
37 0.96 0.94 0.93

Table A.20 SIF values for NBCT Plan P7 and BCT Plan P12 (on a Distributed
Memory Architecture with Cube Topology)

Number of Speed Improvement Factor - SIF
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP imae:e imaee imaee
1 1.07 1.07 1.07
5 1.05 1.03 1.03
9 1.13 1.13 1.13

28 0.82 0.83 0.81

www.manaraa.com

182 Appendix A

Table A.21 Speedup for NIPC Plan P2(NBCT on a Shared Memory Architecture with
Global Memory)

Number of Speedup-S

Processors- For 125 x 125 For 625 x 429 image For 1100 x 900
NP image image

1 I 1 1
3 2.38 2.44 2.06
5 3.37 3.56 3.54
7 4.35 4.57 4.35
11 5.32 5.70 5.64
16 6.30 6.99 6.72
20 6.24 7.43 7.36
25 7.95 7.87
27 7.94 7.86

1100 x 900
Image625 x 429

Size 125 x 125

Figure A.1 a Speedup graph for Plan P2

8

6 ena:
CD

4 go
"C.

2 en

5 7 11

3 Number of Processors. NP

www.manaraa.com

Appendix A

100

~
90

, 80
~

70
c 60
III 50
U 40
If 30w 20
~• 10

0
1

20 25 27

Number of Processors· NP

Figure A.1 b Efficiency graph for Plan P2

1100 x 900
625 x429

125 x 125 Image Size

183

Table A.22Speedup for NIPC Plan P3(NBCT on a Shared Memory Architecture with
Local-plus-Global Memory)

Number of Speedup-S
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP imatze image image
1 1 1 1
3 2.71 2.68 2.68
5 4.06 3.93 3.91
7 5.14 4.92 4.90
11 7.43 6.72 6.67
16 10.28 8.25 7.86
20 10.73 9.60· 9.35
25 10.53 9.58 9.32

www.manaraa.com

184 Appendix A

1100 x 900

625 x 429
Image Size 125 x 125

3 5
Number of Processors· NP

til

I
c

".
til

Figure A.2a Speedup graph for Plan P3

1100 x 900
625x429

125 x 125 Image Size

25
Number of Processors· NP

100
~

80.
>.u 60c
CD
U 40
5:
w 20
~

0
1

Figure A.2b Efficiency graph for Plan P3

www.manaraa.com

Appendix A 185

Table A.23Speedup for NIPC Plan P4(NBCT on a Distributed Memory Architecture
with Tree Topology)

Number of Speedup-S

Processors For 125 x 125 For 625 x429 For 1100 x 900
-NP ima2e ima2e ima2e

1 1 1 1
3 2.71 2.60 2.60

5 3.42 3.54 3.53
9 4.50 4.56 4.55
15 5.98 5.92 5.92
21 6.75 6.66 6.62

27 7.25 6.99 6.97

33 6.98 6.70 6.89

1100 x 900
625 x 429

Image Size 125 x 125

3

8

2

5
Number of Processors· NP

.
Ul

Figure A.3a Speedup graph for Plan P4

27 33

Number of Processors - NP

ii=!l7 1100 x 900
625 x 429

125 x 125 Image Size

Figure A.3b Efficiency graph for Plan P4

www.manaraa.com

186 Appendix A

Table A.24Speedup for NIPC Plan P5(NBCT on a Distributed Memory Architecture
with Torus Topology)

Number of Speedup-S
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP image image image
1 1 1 1
3 2.71 2.60 2.60
5 3.42 3.54 3.53
13 5.73 5.79 5.80
17 6.95 6.89 6.87
21 9.61 7.13 7.13
26 6.98 7.03 7.01

Size

til

i
Co
c::

"I

til

10

8

6

4

5
Number of Processors - NP

3

1100 x 900
Image 625 x 429

125 x 125

Figure A.4a Speedup graph for Plan P5

~
I

21 26

Number of Processors·
NP

1100 x 900
625 x 429 .

125 x 125 Image Size

Figure A.4b Efficiency graph for Plan P5

www.manaraa.com

Appendix A 187

Table A.25Speedup for NIPC Plan P6(NBCT on a Distributed Memory Architecture
with Pyramid Topology)

Number of Speedup-S
Processors For 125 x 125 For 625 x429 For 1100 x 900

-NP ima2e ima2e ima2e
1 1 1 1
5 4.81 4.85 4.84
9 5.14 5.20 5.19

21 6.19 6.06 6.07
37 8.36 8.34 8.43
53 7.69 7.80 7.81

1100 x 900

625 x429
Image Size

10

Ul

I
c
'C,
Ul

5
Number of Processors - NP

Figure A.5a Speedup Graph for Plan P6

1100 x 900

625 x 429
Image Size

37 53

Number of Processors· NP

Figure A.5b Efficiency Graph for Plan P6

www.manaraa.com

188 Appendix A

Table A.26Speedup for NIPC Plan P7(NBCT on a Distributed Memory Architecture
with Cube Topology)

ima e
For 1100 x 900

ima eima e
For 125 x 125

Number of f--------...---~==I:-::;.....-.-_r_-------_4
Processors

-NP
1 1
5 4.81 4.85 4.84
9 5.14 5.20 5.19
28 6.89 6.75 7.14

4.83 4.89

8

4

6 en

1
t::...
en2

9
Number of

Processors· NP

5

3.8249

Figure A.6a Speedup graph for Plan P7

28

100

~ 80.
>-u 60c
<I>
U 40IE
w
~ 20•

49
Number of Processors·

NP

1100 x 900

625 x429
Image Size

Figure A.6b Efficiency graph for Plan P7

www.manaraa.com

Appendix A 189

Table A.27Speedup for NIPC Plan P8 (NSS =10%) (SCT on a Shared Memory
Architecture with Global Memory)

Number of Speedup-S
Processors For 125 x 125 For 62Sx429 For 1100 x 900

-NP ima2e ima2e ima2e
1 1 1 1

3 2.20 2.43 2.43

5 3.49 3.49 3.49

11 5.52 5.41 5.41

16 6.30 6.33 6.35
20 5.74 5.75 5.75

1100 x 900

625 x429
Image Size 125 x 125

.
en

7 11 16

3 ~umber of Processors -
NP

Figure A.7a Speedup graph for Plan P8

1100 x 900
625 x 429

Image Size
125 x 125

16 20

Number of Processors - NP

Figure A.7b Efficiency graph for Plan P8

www.manaraa.com

190 Appendix A

Table A.28Speedup for NIPC Plan P9 (NSB =10%)(BCT on a Shared Memory
Architecture with Local-plus-Global Memory)

Number of Speedup-S
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP imae:e imae:e imae:e
1 1 1 1
3 2.66 2.65 2.64
5 3.96 3.96 3.91
11 6.85 6.69 6.69
16 8.20 7.62 7.97
25 9.73 8.01 7.80

1100 x 900

625 x 429
Image Size 125 x 125

3

Figure A.8a Speedup graph for Plan P9

J='.

25
Number of Processors - NP

Figure A.8b Efficiency graph for Plan P9

10

8

6

4

5
Number of Processors - NP

1100x900
625 x429

125 x 125 Image Size

UI

1
0­
r:

",
UI

www.manaraa.com

Appendix A 191

Table A.29 Speedup for NIPC Plan P1 (NSB =10%)(BCT on a Distributed Memory
Architecture with Tree Topology)

Number of Speedup-S
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP imaee imaee imaee
1 1 1 1
3 2.55 2.53 2.53
5 4.12 3.89 3.88
9 5.25 5.30 4.87
15 6.56 6.72 6.19
21 6.21 6.21 5.75

.
VI

8

2

3 5
Number of Processors - NP

1100 x 900

625 x 429
Image Size

Figure A.9a Speedup graph for Plan P1

s:-
o

1100 x 900

625 x 429
Image Size

125 x 125

15 21

Number of Processors - NP

Figure A.9b Efficiency graph for Plan P1

www.manaraa.com

192 Appendix A

Table A.30Speedup for NIPC Plan P10 (NSB =10%) (BCT on a Distributed Memory
Architecture with Torus Topology)

Number of Speedup.S
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP imaee imaee imaee
1 1 1 1
3 2.55 2.53 2.53
5 4.12 3.89 3.88
9 4.91 5.01 4.65
13 4.40 4.36 5.44
17 4.81

1100 x900

625 x 429
Image Size

Figure A.1 Oa Speedup graph for Plan P10

Ul

i
Co
c::
'tl,
Ul

3
Number of Processors· NP

~.

1100 x 900

625 x 429
Image Size

125 x 125

13 17

Number of Processors· NP

Figure A.10b Efficiency graph for Plan P10

www.manaraa.com

Appendix A 193

Table A.31 Speedup for NIPC Plan P11 (NSB =10%)(BCT on a Distributed Memory
Architecture with Pyramid Topology)

Number of Speedup-S
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP imaee imaee imaee
1 1 1 1
5 4.70 4.68 4.67
9 5.43 5.48 5.48

21 7.70 7.71 7.66
37 7.50 7.29 7.28

8

6 til

I4 c::
't:l

1100 x 900

625 x 429
Image Size 125 x 125

5

Figure A.11 a Speedup graph for Plan P11

2

9
Number of

Processors· NP

.
til

21

100

~ 80.
>.u 60c::
Gl
U 40if
w
~ 20.

37
Number of Processors·

NP

1100 x900

625 x 429
Image Size

Figure A.11 b Efficiency graph for Plan P11

www.manaraa.com

194 Appendix A

Table A.32Speedup for NIPC Plan P12 (NSB =10%)(BCT on a Distributed Memory
Architecture with Cube Topology)

Number of Speedup-S
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP ima2e ima2e ima2e
1 1 1 1
5 4.70 4.68 4.67
9 5.43 5.48 5.48
28 5.25 5.21 5.38

900 x
429 125

x
125

6
Ih

4 'i
Cll
Q.
C

2 't:l.
Ih

9
Number of

Processors· NP

Figure A.12a Speedup graph for Plan P12

100

80

60

40

20

o
1

28
Number of Processors­

NP

Figure A.12b Efficiency graph for Plan P12

1100x900

www.manaraa.com

Appendix A 195

Table A.33Speedup for IPC Plan P13 (NSB =10%) (BCT on a Shared Memory
Architecture with Global Memory)

Number of Speedup-S
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP ima2e ima2e ima2e
1 1 1 1
5 2.46 3.88 3.86
7 4.03 4.80 4.93
9 4.56 5.30 5.48
13 5.21 5.83 5.84
17 4.84 5.63 5.67

1100x900

625 x429
Image Size

CIl

I
c
"0.
CIl

5 7
Number of Processors· NP

Figure A.13a Speedup graph for Plan P13

1100 x 900

625 x429
Image Size

9 13 17

Number of Processors - NP

I=".
>-u
C
Ql
U
IE
w
i!-

5 7

Figure A.13b Efficiency graph for Plan P13

www.manaraa.com

196 Appendix A

Table A.34Speedup for IPC Plan P14 (NSB =10%) (BCT on a Distributed Memory
Architecture with Torus Topology)

Number of Speedup-S
Processors- For 125 x 125 For 625 x 429 For 1100 x 900

NP ima2e ima2e ima2e
1 1 1 1
3 2.47 2.51 2.51
5 3.45 3.97 3.92
9 5.03 5.32 5.58
13 5.57 5.91 5.97
17 5.37 5.65 5.68

1100x 900

625 x 429
Image Size

3 5
Number of Processors· NP

Figure A.14a Speedup graph for Plan P14

1100 x900

625 x429
Image Size

~,
~
c
G)

u
5:w
~.

3 5
9 13 17

Number of Processors· NP

Figure A.14b Efficiency graph for Plan P14

www.manaraa.com

Appendix A

Table A.35Speedup for IPC Plan P15 (NSB =10%) (BCT on Distributed Memory
Architecture with Pyramid Topology)

197

Number of Speedup-S
Processors For 125 x 125 For 625 x 429 For 1100 x 900

-NP imaee imaee imaee
1 1 1 1
5 3.69 3.85 3.87
9 5.19 5.38 6.01

21 8.70 7.93 7.69
37 8.39 7.71 7.38

1100 x 900

625 x 429
Image Size

5

Figure A.15a Speedup graph for Plan P15

9
Number of

Processors - NP

en
j
Co
C
"0,
en

21

100

I=" 80,
>-u 60c
GI·u 40E
UI
~•

37
Number of Processors·

NP

1100 x 900

Figure A.15b Efficiency graph for Plan P15

www.manaraa.com

A

analysis, 2, 7, 73, 74, 106, 119, 147, 149,
160, 165

animation, 75,128
applications, 2, 5,6, 7,9,10,11,13,62,

65,73,80,87,88, 101, 166
architecture, 5, 7, 60, 61, 62, 66, 69, 70,

71,72,77,79,80,84,87,88,91,93,
97,98,103,110,116,120,139,144,
149, 159, 163, 164, 165, 166

arithmetic operation, 29, 160

B
bandwidth, 1, 2, 90, 92, 98, 100
BCT, 39,40,46,48,49,50,57, 120, 124,

133, 134, 135, 138,140, 141, 142, 143,
144, 145, 146, 147, 148, 164, 165

Block comparator, 27
Block comparison, 35,40,161
block dependency, 164
block intensity, 33, 35
blocks, 4, 5, 6, 9, 17,21,23,26,27,34,

37,39,40,47,51,58,68,69,74,75,
90,123,124,125,131,137,149,160,
161, 162, 164, 165, 166

byte, 83, 124, 125

c
Capacity, 123
classification, 3, iO, 60, 67
cluster, 98, 99, 100, 103
communication, 1,60,68,77,80,81,82,

83,86,87,90,91,92,95,97,98,101,

INDEX

105, 106, 107, 108, 109, 110, 112, 116,
129, 131, 137, 13~ 139, 163, 165

communication links, 81, 98
communication routine, 82, 86, 87, 92,

105, 106, 107, 108, 109, 110, 116,163
comparison, 4, 30, 32, 33, 34, 35, 37, 39,

40,43,45,67,72,73,80,109,110,
114, 116, 117, 123, 133, 135, 137, 138,
139,140,141,142,143,144,145,146,
147, 149, 160, 161, 164, 165, 166, 167

compression, 1,2,3,4,5,6,7,9,10,11,
12,13,17,18,19,20,21,26,27,29,
30,31,32,51,58,59,60,67,68,71,
73,74,78,90,93,97,103,119,120,
124, 125, 130, 132, 159,160, 162, 163,
164,166

compression ratio, 1, 2, 3, 4, 17, 20, 21,
51,159,162,163

computation, 29, 30, 39, 59, 90, 97, 98,
112, 116, 121, 129, 143, 161

computer, 1,4,6,7,21,40,59,60,67,71,
73,74,76,79,80,87,97,98,119,120,
140,159, 161, 165

construct, 62
cube, 70

D
data ordering, 14, 15,23,24
data stream, 60
data structure, 4, 23, 24, 25, 45, 47,51,

162
data units, 14, 17,21,25
dependency, 5, 7,59,163
digital, 1,2,3,4,6,7,9, 10, 12,58,59,

60,67,68,71,74,78,80,97,119,120,
160, 163, 164

199

www.manaraa.com

200

Discrete Cosine Transform (OCT), 3, 9,
18, 160

distributed, 2, 5, 7, 40, 59, 60, 62, 66, 69,
70,71,79,82,84,85,92,97, 101, 161,
163, 164, 165

distribution, 83, 84,86,103,104, 124
divide and conquer, 137, 149, 164
documentation, 7, 73,119

E

edge expansion, 21, 24
eff!ciency,6, 7,59,60,68, 72, 76, 78,90,

105, 106, 107, 109, 110, 112, 114, lIS,
116, 117, 119, 130, 140, 147, 149, 159,
163, 164, 165

encoding, 3, 4,5,12, 14, 16, 18, 19,20,
21,24,30,31,84,93,96

end,25,26,47,49,93, 123, 127, 128, 129
enhancement, 1,6, 7, 9, 27, 67, 130, 159
execution time, 5, 6, 29, 72, 74, 82, 85, 86,

95,96,97,105,114,119,121,123,
129,130,131,132,133,134,135,137,
138,139,159,163,164,165

experiments, 6, 7, 74,76,86, 119, 129,
133, 149, 165

F
fractal, 4, 58
frame, 5, 23, 24, 25, 112, 116
frequency oriented, 3

G
global, 61, 62, 70, 159
granularity, 60
graph, 39,50, 52, 77, 78,86,91,95,104,

106, 109, 110, 1I2, 114, 115, 116, 128,
136, 140, 144, 163

H
hardware, 2, 4, 5, 6, 7,13, 19,20,21,58,

74,75,79,80,83,101,116,120, 121,
128, 166

hardware chip, 4, 13
header, 14, 17, 19,20,21,23,24,25,26,

47,49,84,92,96,103
hybrid, 3, 7, 59, 60, 69, 72, 74, 79, 92,

115, 117, 145, 159, 163, 164

Index

I
image, 1,2,3,4,5,6,7,9,10, II, 12, 13,

14, IS, 17, 18, 19,21,23,24,25,26,
27,30,32,33,36,37,39,40,41,42,
43,45,46,47,48,49,50,51,52,53,
54,55,56,58,59,60,65,67,68,69,
71,72, 73, 74, 78, 79, 80, 84, 85, 86,
87,90,93,95,96,97, 101, 103, 104,
105, 106, 107, 108, 109, 110, Ill, 112,
113, 114, 1I6, 1I9, 120, 123, 124, 125,
126,130,131,132,133,134,135,136,
137,138, 139,140, 141, 142, 143, 145,
146,147,148,149,159,160,161,162,
163, 164, 165, 166

implementation, 2, 4,5,6,7,8, 13, 19,20,
21,58,59,66,67,72,75,77,79,80,
84,85,93,96,97, 103, 104, 105, 116,
120, 129, 130, 160, 163, 164, 166

importance oriented, 3
improvement, 1,2,39,40,51,52,58,77,

135, 161, 162, 163, 165
instruction, 60, 74, 75, 90,122,123,124,

125, 126, 13l
Instruction, 60, 80, 82, 87, 88, 98,121,

123, 163
instruction stream, 60
intensity value, 32, 35, 40, 69, 124, 131,

161
interconnection, 62, 65, 66, 70, 79, 80
interleave, 84

J
JPEG, 1,2,3,4,5,6,7,9, 10, II, 12, 13,

14,16,17,19,20,21,22,23,24,26,
27,29,30,31,32,39,46,47,48,49,
50,58,67,71,72,73,78,79,80,84,
86,87,92,93,94,95,96,97,103,105,
110, Ill, 112, 113, 114, 115, 116, 121,
124,130, 159, 160, 161, 163, 164, 166

L
List, 26, 33, 34, 37, 41, 42, 43,121,123
local, 61, 62, 81, 82, 87, 88, 92, 98, 100,

159
lossless, 3, 10, 12,24
lossy, 3, 10, 12

www.manaraa.com

Index

M
master, 83,90, 92
match, 12,26,37,47,161, 165
MCU, 14, 15, 17, 18,21,24,25
Memory, 61, 62, 67, 69, 70, 81, 84, 87, 93,

120, 130, 131, 132, 134, 135, 136, 137,
138, 140, 141, 142, 143, 145, 146, 147,
148, 149, 165

message passing, 71, 72, 79, 97,101
model, 6, 7, 72, 73, 74, 75, 76, 84,119,

120, 123, 127, 128, 129, 149, 164
module, 61, 75, 125, 126, 127, 128
motion, 3, 4, 5, 9,12,13, 166
MPEG, 2, 3, 4, 9,13,159,166
MPP,82, 83, 86, 87, 105, 106, 107, 108,

109, 110, 116, 163

N
NBCT, 39,41,42,43,46,52,57,67,71,

72, 84, 93, 103, 130, 131, 132, 133,
134, 135, 139, 140, 141, 142, 143, 144,
145, 146, 147, 148, 161, 164, 165

Network 11.5, 7, 59, 71, 72, 73, 74, 75, 76,
78,119, 120, 125, 126, 127, 128, 129,
149, 159, 160, 163, 164

network topology, 7,59,83,120,163
node, 5, 72,84,86,96,97,98,100,101,

102, 103, 105

o
operating system, 66,80,82,83, 84, 87,

90
organisation, 17,59,61,62,70,90,131,

132, 134, 135, 136, 137, 13~ 140, 141,
142, 143, 145, 146, 147, 148, 149, 164,
165, 166

overhead, 40, 74, 75, 77,83,90,98,112,
116, 122, 161

p

parallel, 1,2,4,5,6,7,8,9,21,40,58,
59,60,66,67,68,69,71,72,73,74,
76,77,78,79,80,82,83,84,87,92,
93,97,98,101,103,105,114,115,
116,119,120,121,130,137,140,143,
144,147,149,159,160,161,162,163,
164, 165, 166

parameter, 76, 88, 130, 131, 132

201

partitioning, 5, 7, 59, 84, 103, 163
partitioning method, 7, 59, 163
path graph, 84, 103
PE, 62, 74, 75, 120, 121, 122, 123, 128
performance, 1,2,6,7,12,26,58,72,74,

76,77,78,80,87,88,90,98,105,114,
117,119,159,160,164

plan, 76
plans, 7, 60
plotting, 129
Process, 124, 125, 126
processing element, 66, 77, 87, 125
processing element (PE), 87
processor, 4, 5, 30, 60, 61, 62, 65, 66, 67,

68,71,72,73,76,77,78,79,80,82,
83,84,87,88,89,90,92,93,94,95,
96,97,98,100,101,103,106,121,
123, 124, 126, 127, 130, 137, 140, 143,
147,149,161,163,164,165,167

processors, 2, 5, 7, 29,40,59,60,61,62,
63,64,65,66,68,69,70,71,76,77,
78,79,80,82,84,85,86,88,92,93,
95,96,97,98, 101, 103, 105, 106, 110,
112,114,115,116,121,124,131,133,
134, 137, 138, 139, 140, 144, 149, 161,
163, 164, 165, 166, 167

programming, 5, 59, 66, 72, 74, 78, 79, 80,
82,83,84,87,92,97,101,163

programming language, 5, 59, 66, 74, 78,
82,84,101

pyramid, 70, 159, 165

Q
quality, 1,2,4,6, 17, 18,20,21,23,46,

50,51,52,53,54,55,56,57,86,162,
163, 166

quality factor, 4, 17,21
quantisation,9, 14, 17, 18, 19,20,21,23,

24,30,31,93,96

R
ratio, 10, 17,21,39,45,46,51, 135
real-time, 2, 5, 6, 20, 87, 88, 129, 166
region, 14, 17
run, 75, 76, 81, 101, 125, 127, 128, 138

s
sample-by-sample, 33, 37,160, 161
SBus, 87, 88,90,91,92,93

www.manaraa.com

202

scaleup, 6, 7, 59, 60, 76, 77, 78, 109, 114,
115,117,119,133,140,144,145,146,
147, 149, 159, 163, 164, 165

scan, 14, 15,23,25
SD, 74, 75,120, 121, 122, 123, 124, 125,

126, 127, 128
selection, 25
Send, 124, 125, 126, 127, 131
shared, 7,59,60,61,66,69, 70, 72, 74,

79,87,90,91,92,93,98,110, 138,
159, 163, 164, 165, 166

shiva,92
simulation, 5, 6, 7, 59, 72, 73, 74, 75, 76,

78,80,88, 119, 120, 125, 127, 128,
129, 130, 131, 132, 133, 136, 13~ 139,
149, 159, 160, 163, 164, 165

simulation package, 6, 7, 59, 72, 74, 78,
119,120,129,149,159,160,163,164

slave, 62, 65, 66, 92
software, 2, 4, 6,13,17,20,21,22,31,58,

74,75,76,92,101,121,166
sort, 35, 36, 37, 39, 40,131,161,166
specification, 25, 74, 83,101,121,122
speedup, 1,2,6,7,9,40,58,59,60,76,

77,78, 105, 106, 107, 108, 109, 110,
112,113,114,115,116,117,119,130,
140, 141, 142, 143, 144, 147, 149, 159,
161, 163, 164, 165

standard, 1,3,4,6,9, 12, 13, 14, 17,21,
27,45,166

still, 3, 5, 6, 9, 10, 12, 13, 159
system, 5, 6, 7, 12, 13,59,60,62,68,71,

72,73,74,75,76,77,79,80,81,82,
83,84,85,86,87,88,89,90,92,93,
94,95,97,98,100, 101, 103, 104, 105,
106, 107, 108, 110, 111, 112, 113, 114,
115, 116, 117, 120, 121, 127, 149, 159,
163, 164, 166

system analysis, 74, 120

T
table, 12, 14, 19,20,21,23,24,25,39,41,

42,43,47,48,49,50,51,52,95,97,
109,114,129,130,135,136,137,139,
141,142,143,145,146,148

task graph, 95
taxonomy, 60
technique, 1,3,4,5,6,7,9, 10, 12,58,59,

67,73,75, 149, 160, 163
techniques, 1,2,3,4,6,7,9, 10, 12, 13,

35,45,58,73,74,75,87,88,97,119,

Index

120, 130, 133, 137, 145, 149, 159, 160,
164, 165, 166

technology, 2, 4, 80, 88, 166
tools, 101
topology, 60,62,65,66,70,71,72,79,

80,81,84,93,103,120,134,135,136,
138, 141, 142, 143, 145, 146, 147, 148,
149, 159, 165, 166

torus, 70, 79, 80
total time, 31, 96
transmission rate, 91
transputer, 4,5,80,81,83,84,96,97, 103
tree, 10,70,83,103,120

u
units, 14, 17,79,87,88,89,90,92

v
validation, 7, 73, 75, 119, 120, 149
vector, 3,10,12,88,97
verification, 7, 73, 75,119,120,126

w
wavelet, 11,58

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

